Analysis of bending stiffness in multi-stage superconducting cable

•A modified theoretical model is proposed to study the bending stiffness of the superconducting cable with multi-stage structure.•A full 3D finite element model has been developed to validate the theoretical model for the bending stiffness problems.•The bending stiffness of multi-stage superconducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2022-07, Vol.180, p.113187, Article 113187
Hauptverfasser: Guo, J.J., Gao, Z.W., Zhang, X.Y., Zhou, Y.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113187
container_title Fusion engineering and design
container_volume 180
creator Guo, J.J.
Gao, Z.W.
Zhang, X.Y.
Zhou, Y.H.
description •A modified theoretical model is proposed to study the bending stiffness of the superconducting cable with multi-stage structure.•A full 3D finite element model has been developed to validate the theoretical model for the bending stiffness problems.•The bending stiffness of multi-stage superconducting cables were systematically investigated. Superconducting cables with multi-stage structures are used in the ITER magnets. Here we propose a theoretical model focusing on the bending behavior of superconducting cable. On the basis of the analysis of the effective Young's moduli and curvature radius, the bending stiffnesses of multi-stage superconducting cables are obtained theoretically. The dependence of the bending stiffness on the helical pitch at different hierarchical structure is examined. With the aid of the finite element approach and a simple experiment, the theoretical model can be validated by comparing the theoretical solutions and numerical and experimental results. The theoretical predictions are in good agreement with the numerical and experimental results. The results show that the proposed model can successfully analyze the bending stiffnesses of the multi-stage superconducting cables. This theoretical model can be utilized to optimize the bending stiffnesses of the multi-stage superconducting cables, by tuning the helical pitch of the cables.
doi_str_mv 10.1016/j.fusengdes.2022.113187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692283896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379622001831</els_id><sourcerecordid>2692283896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-ef46230a99beb99898ac273cfcd33a91d35dc2d9f9e226aa31777f402f47a8193</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BgueW_NRm-a4Ln7Bghc9hzSZLCnddM20wv57WypehWHmMO_7MvMQcstowSir7tvCjwhx7wALTjkvGBOslmdkNXWRS6aqc7KiitNcSFVdkivEllImp1qRx0003QkDZr3PGoguxH2GQ_A-AmIWYnYYuyHkOJg9ZDgeIdk-utEOs9CapoNrcuFNh3DzO9fk8_npY_ua795f3rabXW65FEMOvqy4oEapBhqlalWbeWG9dUIYxZx4cJY75RVwXhkjmJTSl5T7UpqaKbEmd0vuMfVfI-Cg235M0_moeaU4r0WtqkklF5VNPWICr48pHEw6aUb1DEy3-g-YnoHpBdjk3CxOmJ74DpA02gDRggsJ7KBdH_7N-AER5nia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692283896</pqid></control><display><type>article</type><title>Analysis of bending stiffness in multi-stage superconducting cable</title><source>Elsevier ScienceDirect Journals</source><creator>Guo, J.J. ; Gao, Z.W. ; Zhang, X.Y. ; Zhou, Y.H.</creator><creatorcontrib>Guo, J.J. ; Gao, Z.W. ; Zhang, X.Y. ; Zhou, Y.H.</creatorcontrib><description>•A modified theoretical model is proposed to study the bending stiffness of the superconducting cable with multi-stage structure.•A full 3D finite element model has been developed to validate the theoretical model for the bending stiffness problems.•The bending stiffness of multi-stage superconducting cables were systematically investigated. Superconducting cables with multi-stage structures are used in the ITER magnets. Here we propose a theoretical model focusing on the bending behavior of superconducting cable. On the basis of the analysis of the effective Young's moduli and curvature radius, the bending stiffnesses of multi-stage superconducting cables are obtained theoretically. The dependence of the bending stiffness on the helical pitch at different hierarchical structure is examined. With the aid of the finite element approach and a simple experiment, the theoretical model can be validated by comparing the theoretical solutions and numerical and experimental results. The theoretical predictions are in good agreement with the numerical and experimental results. The results show that the proposed model can successfully analyze the bending stiffnesses of the multi-stage superconducting cables. This theoretical model can be utilized to optimize the bending stiffnesses of the multi-stage superconducting cables, by tuning the helical pitch of the cables.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2022.113187</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bending ; Bending stiffness ; Cables ; Finite element model ; Helical pitch ; Magnets ; Mathematical models ; Modulus of elasticity ; Multi-stage superconducting cable ; Stiffness ; Structural hierarchy ; Superconductivity ; Theoretical model</subject><ispartof>Fusion engineering and design, 2022-07, Vol.180, p.113187, Article 113187</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-ef46230a99beb99898ac273cfcd33a91d35dc2d9f9e226aa31777f402f47a8193</citedby><cites>FETCH-LOGICAL-c273t-ef46230a99beb99898ac273cfcd33a91d35dc2d9f9e226aa31777f402f47a8193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379622001831$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Guo, J.J.</creatorcontrib><creatorcontrib>Gao, Z.W.</creatorcontrib><creatorcontrib>Zhang, X.Y.</creatorcontrib><creatorcontrib>Zhou, Y.H.</creatorcontrib><title>Analysis of bending stiffness in multi-stage superconducting cable</title><title>Fusion engineering and design</title><description>•A modified theoretical model is proposed to study the bending stiffness of the superconducting cable with multi-stage structure.•A full 3D finite element model has been developed to validate the theoretical model for the bending stiffness problems.•The bending stiffness of multi-stage superconducting cables were systematically investigated. Superconducting cables with multi-stage structures are used in the ITER magnets. Here we propose a theoretical model focusing on the bending behavior of superconducting cable. On the basis of the analysis of the effective Young's moduli and curvature radius, the bending stiffnesses of multi-stage superconducting cables are obtained theoretically. The dependence of the bending stiffness on the helical pitch at different hierarchical structure is examined. With the aid of the finite element approach and a simple experiment, the theoretical model can be validated by comparing the theoretical solutions and numerical and experimental results. The theoretical predictions are in good agreement with the numerical and experimental results. The results show that the proposed model can successfully analyze the bending stiffnesses of the multi-stage superconducting cables. This theoretical model can be utilized to optimize the bending stiffnesses of the multi-stage superconducting cables, by tuning the helical pitch of the cables.</description><subject>Bending</subject><subject>Bending stiffness</subject><subject>Cables</subject><subject>Finite element model</subject><subject>Helical pitch</subject><subject>Magnets</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Multi-stage superconducting cable</subject><subject>Stiffness</subject><subject>Structural hierarchy</subject><subject>Superconductivity</subject><subject>Theoretical model</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BgueW_NRm-a4Ln7Bghc9hzSZLCnddM20wv57WypehWHmMO_7MvMQcstowSir7tvCjwhx7wALTjkvGBOslmdkNXWRS6aqc7KiitNcSFVdkivEllImp1qRx0003QkDZr3PGoguxH2GQ_A-AmIWYnYYuyHkOJg9ZDgeIdk-utEOs9CapoNrcuFNh3DzO9fk8_npY_ua795f3rabXW65FEMOvqy4oEapBhqlalWbeWG9dUIYxZx4cJY75RVwXhkjmJTSl5T7UpqaKbEmd0vuMfVfI-Cg235M0_moeaU4r0WtqkklF5VNPWICr48pHEw6aUb1DEy3-g-YnoHpBdjk3CxOmJ74DpA02gDRggsJ7KBdH_7N-AER5nia</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Guo, J.J.</creator><creator>Gao, Z.W.</creator><creator>Zhang, X.Y.</creator><creator>Zhou, Y.H.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202207</creationdate><title>Analysis of bending stiffness in multi-stage superconducting cable</title><author>Guo, J.J. ; Gao, Z.W. ; Zhang, X.Y. ; Zhou, Y.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-ef46230a99beb99898ac273cfcd33a91d35dc2d9f9e226aa31777f402f47a8193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bending</topic><topic>Bending stiffness</topic><topic>Cables</topic><topic>Finite element model</topic><topic>Helical pitch</topic><topic>Magnets</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Multi-stage superconducting cable</topic><topic>Stiffness</topic><topic>Structural hierarchy</topic><topic>Superconductivity</topic><topic>Theoretical model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, J.J.</creatorcontrib><creatorcontrib>Gao, Z.W.</creatorcontrib><creatorcontrib>Zhang, X.Y.</creatorcontrib><creatorcontrib>Zhou, Y.H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, J.J.</au><au>Gao, Z.W.</au><au>Zhang, X.Y.</au><au>Zhou, Y.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of bending stiffness in multi-stage superconducting cable</atitle><jtitle>Fusion engineering and design</jtitle><date>2022-07</date><risdate>2022</risdate><volume>180</volume><spage>113187</spage><pages>113187-</pages><artnum>113187</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•A modified theoretical model is proposed to study the bending stiffness of the superconducting cable with multi-stage structure.•A full 3D finite element model has been developed to validate the theoretical model for the bending stiffness problems.•The bending stiffness of multi-stage superconducting cables were systematically investigated. Superconducting cables with multi-stage structures are used in the ITER magnets. Here we propose a theoretical model focusing on the bending behavior of superconducting cable. On the basis of the analysis of the effective Young's moduli and curvature radius, the bending stiffnesses of multi-stage superconducting cables are obtained theoretically. The dependence of the bending stiffness on the helical pitch at different hierarchical structure is examined. With the aid of the finite element approach and a simple experiment, the theoretical model can be validated by comparing the theoretical solutions and numerical and experimental results. The theoretical predictions are in good agreement with the numerical and experimental results. The results show that the proposed model can successfully analyze the bending stiffnesses of the multi-stage superconducting cables. This theoretical model can be utilized to optimize the bending stiffnesses of the multi-stage superconducting cables, by tuning the helical pitch of the cables.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2022.113187</doi></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2022-07, Vol.180, p.113187, Article 113187
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_journals_2692283896
source Elsevier ScienceDirect Journals
subjects Bending
Bending stiffness
Cables
Finite element model
Helical pitch
Magnets
Mathematical models
Modulus of elasticity
Multi-stage superconducting cable
Stiffness
Structural hierarchy
Superconductivity
Theoretical model
title Analysis of bending stiffness in multi-stage superconducting cable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20bending%20stiffness%20in%20multi-stage%20superconducting%20cable&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Guo,%20J.J.&rft.date=2022-07&rft.volume=180&rft.spage=113187&rft.pages=113187-&rft.artnum=113187&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2022.113187&rft_dat=%3Cproquest_cross%3E2692283896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692283896&rft_id=info:pmid/&rft_els_id=S0920379622001831&rfr_iscdi=true