Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying

This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2022-08, Vol.204, p.110396, Article 110396
Hauptverfasser: Feng, Hao, Li, Hua-Bing, Dai, Jing, Han, Yu, Qu, Jin-Dong, Jiang, Zhou-Hua, Zhao, Yang, Zhang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110396
container_title Corrosion science
container_volume 204
creator Feng, Hao
Li, Hua-Bing
Dai, Jing
Han, Yu
Qu, Jin-Dong
Jiang, Zhou-Hua
Zhao, Yang
Zhang, Tao
description This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended. [Display omitted] •The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs.
doi_str_mv 10.1016/j.corsci.2022.110396
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692279413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X22003146</els_id><sourcerecordid>2692279413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWC9v4OKA66m5TKeTjVKKN_CyUXQX0kzSpoxJTdLC7HwHH8B380lMGVcuXB04fP9_zs-P0AnBQ4JJdbYcKh-iskOKKR0SghmvdtCA1GNe4JJXu2iAMcEFZ_XrPjqIcYkxpnkzQF8viw6mfhqu9L17sHBzOQHl120DzidYyRjtRiYN1oFatD7YRkP07TpZ7y7g--MTJpnc6BZiChmcd5A8RDt31lglXWo7sG-rkJHsG4KPWQhBRxuTdEqDN3_Pzzp4KGTb-s66-RHaM7KN-vh3HqLnq8un6U1x93h9O53cFYrVo1TIUaW1JMyMR3VJ2Zirpiy5UQ2lnFaYEcYJNpLxmpVsRjWhspL1yBjCK9k0M3aITnvf_Or7Wsckln4dXD4paMUpHfOSsEyVPaVykBi0Eatg32ToBMFiW4VYir4Ksa1C9FVk2Xkv0znBxuogMqFz-sYGrZJovP3f4AdtW5Xt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692279413</pqid></control><display><type>article</type><title>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Feng, Hao ; Li, Hua-Bing ; Dai, Jing ; Han, Yu ; Qu, Jin-Dong ; Jiang, Zhou-Hua ; Zhao, Yang ; Zhang, Tao</creator><creatorcontrib>Feng, Hao ; Li, Hua-Bing ; Dai, Jing ; Han, Yu ; Qu, Jin-Dong ; Jiang, Zhou-Hua ; Zhao, Yang ; Zhang, Tao</creatorcontrib><description>This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended. [Display omitted] •The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2022.110396</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acidification ; Alloy ; Alloying ; Corrosion resistance ; Deposition ; Hydroxides ; Modelling studies ; Nucleation ; Passive films</subject><ispartof>Corrosion science, 2022-08, Vol.204, p.110396, Article 110396</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</citedby><cites>FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2022.110396$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Dai, Jing</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Qu, Jin-Dong</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><title>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</title><title>Corrosion science</title><description>This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended. [Display omitted] •The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs.</description><subject>Acidification</subject><subject>Alloy</subject><subject>Alloying</subject><subject>Corrosion resistance</subject><subject>Deposition</subject><subject>Hydroxides</subject><subject>Modelling studies</subject><subject>Nucleation</subject><subject>Passive films</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhoMoWC9v4OKA66m5TKeTjVKKN_CyUXQX0kzSpoxJTdLC7HwHH8B380lMGVcuXB04fP9_zs-P0AnBQ4JJdbYcKh-iskOKKR0SghmvdtCA1GNe4JJXu2iAMcEFZ_XrPjqIcYkxpnkzQF8viw6mfhqu9L17sHBzOQHl120DzidYyRjtRiYN1oFatD7YRkP07TpZ7y7g--MTJpnc6BZiChmcd5A8RDt31lglXWo7sG-rkJHsG4KPWQhBRxuTdEqDN3_Pzzp4KGTb-s66-RHaM7KN-vh3HqLnq8un6U1x93h9O53cFYrVo1TIUaW1JMyMR3VJ2Zirpiy5UQ2lnFaYEcYJNpLxmpVsRjWhspL1yBjCK9k0M3aITnvf_Or7Wsckln4dXD4paMUpHfOSsEyVPaVykBi0Eatg32ToBMFiW4VYir4Ksa1C9FVk2Xkv0znBxuogMqFz-sYGrZJovP3f4AdtW5Xt</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Feng, Hao</creator><creator>Li, Hua-Bing</creator><creator>Dai, Jing</creator><creator>Han, Yu</creator><creator>Qu, Jin-Dong</creator><creator>Jiang, Zhou-Hua</creator><creator>Zhao, Yang</creator><creator>Zhang, Tao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20220801</creationdate><title>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</title><author>Feng, Hao ; Li, Hua-Bing ; Dai, Jing ; Han, Yu ; Qu, Jin-Dong ; Jiang, Zhou-Hua ; Zhao, Yang ; Zhang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acidification</topic><topic>Alloy</topic><topic>Alloying</topic><topic>Corrosion resistance</topic><topic>Deposition</topic><topic>Hydroxides</topic><topic>Modelling studies</topic><topic>Nucleation</topic><topic>Passive films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Dai, Jing</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Qu, Jin-Dong</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Hao</au><au>Li, Hua-Bing</au><au>Dai, Jing</au><au>Han, Yu</au><au>Qu, Jin-Dong</au><au>Jiang, Zhou-Hua</au><au>Zhao, Yang</au><au>Zhang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</atitle><jtitle>Corrosion science</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>204</volume><spage>110396</spage><pages>110396-</pages><artnum>110396</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended. [Display omitted] •The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2022.110396</doi></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2022-08, Vol.204, p.110396, Article 110396
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2692279413
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Acidification
Alloy
Alloying
Corrosion resistance
Deposition
Hydroxides
Modelling studies
Nucleation
Passive films
title Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20CoCrFeMnNi%20HEA%20could%20not%20passivate%20in%20chloride%20solution?%20%E2%80%93%20A%20novel%20strategy%20to%20significantly%20improve%20corrosion%20resistance%20of%20CoCrFeMnNi%20HEA%20by%20N-alloying&rft.jtitle=Corrosion%20science&rft.au=Feng,%20Hao&rft.date=2022-08-01&rft.volume=204&rft.spage=110396&rft.pages=110396-&rft.artnum=110396&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2022.110396&rft_dat=%3Cproquest_cross%3E2692279413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692279413&rft_id=info:pmid/&rft_els_id=S0010938X22003146&rfr_iscdi=true