Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying
This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2022-08, Vol.204, p.110396, Article 110396 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110396 |
container_title | Corrosion science |
container_volume | 204 |
creator | Feng, Hao Li, Hua-Bing Dai, Jing Han, Yu Qu, Jin-Dong Jiang, Zhou-Hua Zhao, Yang Zhang, Tao |
description | This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended.
[Display omitted]
•The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs. |
doi_str_mv | 10.1016/j.corsci.2022.110396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692279413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X22003146</els_id><sourcerecordid>2692279413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWC9v4OKA66m5TKeTjVKKN_CyUXQX0kzSpoxJTdLC7HwHH8B380lMGVcuXB04fP9_zs-P0AnBQ4JJdbYcKh-iskOKKR0SghmvdtCA1GNe4JJXu2iAMcEFZ_XrPjqIcYkxpnkzQF8viw6mfhqu9L17sHBzOQHl120DzidYyRjtRiYN1oFatD7YRkP07TpZ7y7g--MTJpnc6BZiChmcd5A8RDt31lglXWo7sG-rkJHsG4KPWQhBRxuTdEqDN3_Pzzp4KGTb-s66-RHaM7KN-vh3HqLnq8un6U1x93h9O53cFYrVo1TIUaW1JMyMR3VJ2Zirpiy5UQ2lnFaYEcYJNpLxmpVsRjWhspL1yBjCK9k0M3aITnvf_Or7Wsckln4dXD4paMUpHfOSsEyVPaVykBi0Eatg32ToBMFiW4VYir4Ksa1C9FVk2Xkv0znBxuogMqFz-sYGrZJovP3f4AdtW5Xt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692279413</pqid></control><display><type>article</type><title>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Feng, Hao ; Li, Hua-Bing ; Dai, Jing ; Han, Yu ; Qu, Jin-Dong ; Jiang, Zhou-Hua ; Zhao, Yang ; Zhang, Tao</creator><creatorcontrib>Feng, Hao ; Li, Hua-Bing ; Dai, Jing ; Han, Yu ; Qu, Jin-Dong ; Jiang, Zhou-Hua ; Zhao, Yang ; Zhang, Tao</creatorcontrib><description>This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended.
[Display omitted]
•The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2022.110396</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acidification ; Alloy ; Alloying ; Corrosion resistance ; Deposition ; Hydroxides ; Modelling studies ; Nucleation ; Passive films</subject><ispartof>Corrosion science, 2022-08, Vol.204, p.110396, Article 110396</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</citedby><cites>FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2022.110396$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Dai, Jing</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Qu, Jin-Dong</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><title>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</title><title>Corrosion science</title><description>This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended.
[Display omitted]
•The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs.</description><subject>Acidification</subject><subject>Alloy</subject><subject>Alloying</subject><subject>Corrosion resistance</subject><subject>Deposition</subject><subject>Hydroxides</subject><subject>Modelling studies</subject><subject>Nucleation</subject><subject>Passive films</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhoMoWC9v4OKA66m5TKeTjVKKN_CyUXQX0kzSpoxJTdLC7HwHH8B380lMGVcuXB04fP9_zs-P0AnBQ4JJdbYcKh-iskOKKR0SghmvdtCA1GNe4JJXu2iAMcEFZ_XrPjqIcYkxpnkzQF8viw6mfhqu9L17sHBzOQHl120DzidYyRjtRiYN1oFatD7YRkP07TpZ7y7g--MTJpnc6BZiChmcd5A8RDt31lglXWo7sG-rkJHsG4KPWQhBRxuTdEqDN3_Pzzp4KGTb-s66-RHaM7KN-vh3HqLnq8un6U1x93h9O53cFYrVo1TIUaW1JMyMR3VJ2Zirpiy5UQ2lnFaYEcYJNpLxmpVsRjWhspL1yBjCK9k0M3aITnvf_Or7Wsckln4dXD4paMUpHfOSsEyVPaVykBi0Eatg32ToBMFiW4VYir4Ksa1C9FVk2Xkv0znBxuogMqFz-sYGrZJovP3f4AdtW5Xt</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Feng, Hao</creator><creator>Li, Hua-Bing</creator><creator>Dai, Jing</creator><creator>Han, Yu</creator><creator>Qu, Jin-Dong</creator><creator>Jiang, Zhou-Hua</creator><creator>Zhao, Yang</creator><creator>Zhang, Tao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20220801</creationdate><title>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</title><author>Feng, Hao ; Li, Hua-Bing ; Dai, Jing ; Han, Yu ; Qu, Jin-Dong ; Jiang, Zhou-Hua ; Zhao, Yang ; Zhang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a56eea13f75842379cd449fcd229260313910fa398343b2e12a6a85ff196addb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acidification</topic><topic>Alloy</topic><topic>Alloying</topic><topic>Corrosion resistance</topic><topic>Deposition</topic><topic>Hydroxides</topic><topic>Modelling studies</topic><topic>Nucleation</topic><topic>Passive films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Dai, Jing</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Qu, Jin-Dong</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Hao</au><au>Li, Hua-Bing</au><au>Dai, Jing</au><au>Han, Yu</au><au>Qu, Jin-Dong</au><au>Jiang, Zhou-Hua</au><au>Zhao, Yang</au><au>Zhang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying</atitle><jtitle>Corrosion science</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>204</volume><spage>110396</spage><pages>110396-</pages><artnum>110396</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>This work elaborated the underlying mechanism for the non-passivation of CoCrFeMnNi HEA in chloride solution based on the dissolution-diffusion-deposition model. A novel N-alloying strategy was proposed to significantly improve the corrosion resistance of CoCrFeMnNi HEA. Modelling results indicated that N could consume H+ and relieve the acidification on the surface of HEA, thus accelerating deposition of Cr and Fe oxides and hydroxides. Thereby, the nucleation rate and growth rate of passive film were apparently enhanced after N-alloying, which agreed well with the less defective and thinner passive film. Finally, the element selection for designing corrosion resistant HEAs was recommended.
[Display omitted]
•The model describing passive film formation on CoCrFeMnNi HEA was established.•The non-passivation of CoCrFeMnNi HEA in chloride solution was interpreted.•N accelerated passive film deposition and dramatically enhanced corrosion resistance.•The model gave recommendation for designing corrosion resistant HEAs.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2022.110396</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2022-08, Vol.204, p.110396, Article 110396 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_2692279413 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Acidification Alloy Alloying Corrosion resistance Deposition Hydroxides Modelling studies Nucleation Passive films |
title | Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20CoCrFeMnNi%20HEA%20could%20not%20passivate%20in%20chloride%20solution?%20%E2%80%93%20A%20novel%20strategy%20to%20significantly%20improve%20corrosion%20resistance%20of%20CoCrFeMnNi%20HEA%20by%20N-alloying&rft.jtitle=Corrosion%20science&rft.au=Feng,%20Hao&rft.date=2022-08-01&rft.volume=204&rft.spage=110396&rft.pages=110396-&rft.artnum=110396&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2022.110396&rft_dat=%3Cproquest_cross%3E2692279413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692279413&rft_id=info:pmid/&rft_els_id=S0010938X22003146&rfr_iscdi=true |