Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering
Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled Saccharomyces cerevisiae to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD + ratio from 0.228 to...
Gespeichert in:
Veröffentlicht in: | Sugar tech : an international journal of sugar crops & related industries 2022-08, Vol.24 (4), p.1272-1283 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 4 |
container_start_page | 1272 |
container_title | Sugar tech : an international journal of sugar crops & related industries |
container_volume | 24 |
creator | Li, Fuxiao Wei, Xin Sun, Qinju Guo, Yan Liu, Jidong |
description | Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled
Saccharomyces cerevisiae
to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD
+
ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD
+
even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of
GLT1
which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD
+
. Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD
+
for LA accumulation. |
doi_str_mv | 10.1007/s12355-022-01142-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2692136140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710994519</galeid><sourcerecordid>A710994519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhZfQQFInfyAnQc5KJa1WWh2NSZuAS0vjnMWsdmQr2CtXWjf431e2C0mhFB2kEe97POZV1Q1nd5wx_SlzUTcNZUJQxrkUVJxVl8xoSZmW7MPxLShvRHNRfcz5hTEltDGX1ev3FPudG0McSPRkTudQBkemLvQkDOQJnFtBipu9w0wcJvwVcgAki1WKu-WKfMURurguyP2wDANiCsOSwNCTH3BwhTWZRV9MY3qvuKrOPawzXv-5J9Xz5_vF7IHOv315nE3n1NVcjZR3RitEyYThLdQd16YBWfdKtdLXnRadl43mAqTvWqcUAjIBLbTKo5TI6kl1e_Ldpvhzh3m0L3GXSqpshTKC14rLd6olrNGGwccxgduE7OxUc2aMbLgpqrt_qMrpcRNcHNCH8v8XIE6ASzHnhN5uU9hA2lvO7KE3e-rNlt7ssTcrClSfoLw9LArTW-L_UL8BcD2Z_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692136140</pqid></control><display><type>article</type><title>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</title><source>SpringerNature Journals</source><creator>Li, Fuxiao ; Wei, Xin ; Sun, Qinju ; Guo, Yan ; Liu, Jidong</creator><creatorcontrib>Li, Fuxiao ; Wei, Xin ; Sun, Qinju ; Guo, Yan ; Liu, Jidong</creatorcontrib><description>Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled
Saccharomyces cerevisiae
to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD
+
ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD
+
even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of
GLT1
which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD
+
. Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD
+
for LA accumulation.</description><identifier>ISSN: 0972-1525</identifier><identifier>EISSN: 0974-0740</identifier><identifier>EISSN: 0972-1525</identifier><identifier>DOI: 10.1007/s12355-022-01142-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Accumulation ; Agriculture ; Biomedical and Life Sciences ; Engineering ; Fungi ; Gene regulation ; Glutamate ; L-Lactate dehydrogenase ; Lactate dehydrogenase ; Lactic acid ; Life Sciences ; Metabolic engineering ; Metabolism ; Microorganisms ; NAD ; NADH ; Nicotinamide adenine dinucleotide ; Physiological aspects ; Research Article ; Saccharomyces cerevisiae ; System effectiveness ; Yeast</subject><ispartof>Sugar tech : an international journal of sugar crops & related industries, 2022-08, Vol.24 (4), p.1272-1283</ispartof><rights>The Author(s), under exclusive licence to Society for Sugar Research & Promotion 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Society for Sugar Research & Promotion 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</citedby><cites>FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</cites><orcidid>0000-0003-3269-1240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12355-022-01142-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12355-022-01142-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Fuxiao</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Sun, Qinju</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><title>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</title><title>Sugar tech : an international journal of sugar crops & related industries</title><addtitle>Sugar Tech</addtitle><description>Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled
Saccharomyces cerevisiae
to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD
+
ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD
+
even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of
GLT1
which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD
+
. Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD
+
for LA accumulation.</description><subject>Accumulation</subject><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Engineering</subject><subject>Fungi</subject><subject>Gene regulation</subject><subject>Glutamate</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Life Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>NAD</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Physiological aspects</subject><subject>Research Article</subject><subject>Saccharomyces cerevisiae</subject><subject>System effectiveness</subject><subject>Yeast</subject><issn>0972-1525</issn><issn>0974-0740</issn><issn>0972-1525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrGzEQhZfQQFInfyAnQc5KJa1WWh2NSZuAS0vjnMWsdmQr2CtXWjf431e2C0mhFB2kEe97POZV1Q1nd5wx_SlzUTcNZUJQxrkUVJxVl8xoSZmW7MPxLShvRHNRfcz5hTEltDGX1ev3FPudG0McSPRkTudQBkemLvQkDOQJnFtBipu9w0wcJvwVcgAki1WKu-WKfMURurguyP2wDANiCsOSwNCTH3BwhTWZRV9MY3qvuKrOPawzXv-5J9Xz5_vF7IHOv315nE3n1NVcjZR3RitEyYThLdQd16YBWfdKtdLXnRadl43mAqTvWqcUAjIBLbTKo5TI6kl1e_Ldpvhzh3m0L3GXSqpshTKC14rLd6olrNGGwccxgduE7OxUc2aMbLgpqrt_qMrpcRNcHNCH8v8XIE6ASzHnhN5uU9hA2lvO7KE3e-rNlt7ssTcrClSfoLw9LArTW-L_UL8BcD2Z_g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Fuxiao</creator><creator>Wei, Xin</creator><creator>Sun, Qinju</creator><creator>Guo, Yan</creator><creator>Liu, Jidong</creator><general>Springer India</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3269-1240</orcidid></search><sort><creationdate>20220801</creationdate><title>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</title><author>Li, Fuxiao ; Wei, Xin ; Sun, Qinju ; Guo, Yan ; Liu, Jidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Engineering</topic><topic>Fungi</topic><topic>Gene regulation</topic><topic>Glutamate</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Life Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>NAD</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Physiological aspects</topic><topic>Research Article</topic><topic>Saccharomyces cerevisiae</topic><topic>System effectiveness</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fuxiao</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Sun, Qinju</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><collection>CrossRef</collection><jtitle>Sugar tech : an international journal of sugar crops & related industries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fuxiao</au><au>Wei, Xin</au><au>Sun, Qinju</au><au>Guo, Yan</au><au>Liu, Jidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</atitle><jtitle>Sugar tech : an international journal of sugar crops & related industries</jtitle><stitle>Sugar Tech</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>1272</spage><epage>1283</epage><pages>1272-1283</pages><issn>0972-1525</issn><eissn>0974-0740</eissn><eissn>0972-1525</eissn><abstract>Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled
Saccharomyces cerevisiae
to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD
+
ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD
+
even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of
GLT1
which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD
+
. Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD
+
for LA accumulation.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12355-022-01142-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3269-1240</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0972-1525 |
ispartof | Sugar tech : an international journal of sugar crops & related industries, 2022-08, Vol.24 (4), p.1272-1283 |
issn | 0972-1525 0974-0740 0972-1525 |
language | eng |
recordid | cdi_proquest_journals_2692136140 |
source | SpringerNature Journals |
subjects | Accumulation Agriculture Biomedical and Life Sciences Engineering Fungi Gene regulation Glutamate L-Lactate dehydrogenase Lactate dehydrogenase Lactic acid Life Sciences Metabolic engineering Metabolism Microorganisms NAD NADH Nicotinamide adenine dinucleotide Physiological aspects Research Article Saccharomyces cerevisiae System effectiveness Yeast |
title | Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20L-Lactic%20Acid%20in%20Saccharomyces%20cerevisiae%20Through%20Metabolic%20Engineering%20and%20Rational%20Cofactor%20Engineering&rft.jtitle=Sugar%20tech%20:%20an%20international%20journal%20of%20sugar%20crops%20&%20related%20industries&rft.au=Li,%20Fuxiao&rft.date=2022-08-01&rft.volume=24&rft.issue=4&rft.spage=1272&rft.epage=1283&rft.pages=1272-1283&rft.issn=0972-1525&rft.eissn=0974-0740&rft_id=info:doi/10.1007/s12355-022-01142-2&rft_dat=%3Cgale_proqu%3EA710994519%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692136140&rft_id=info:pmid/&rft_galeid=A710994519&rfr_iscdi=true |