Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering

Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled Saccharomyces cerevisiae to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD + ratio from 0.228 to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sugar tech : an international journal of sugar crops & related industries 2022-08, Vol.24 (4), p.1272-1283
Hauptverfasser: Li, Fuxiao, Wei, Xin, Sun, Qinju, Guo, Yan, Liu, Jidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue 4
container_start_page 1272
container_title Sugar tech : an international journal of sugar crops & related industries
container_volume 24
creator Li, Fuxiao
Wei, Xin
Sun, Qinju
Guo, Yan
Liu, Jidong
description Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled Saccharomyces cerevisiae to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD + ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD + even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of GLT1 which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD + . Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD + for LA accumulation.
doi_str_mv 10.1007/s12355-022-01142-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2692136140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710994519</galeid><sourcerecordid>A710994519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhZfQQFInfyAnQc5KJa1WWh2NSZuAS0vjnMWsdmQr2CtXWjf431e2C0mhFB2kEe97POZV1Q1nd5wx_SlzUTcNZUJQxrkUVJxVl8xoSZmW7MPxLShvRHNRfcz5hTEltDGX1ev3FPudG0McSPRkTudQBkemLvQkDOQJnFtBipu9w0wcJvwVcgAki1WKu-WKfMURurguyP2wDANiCsOSwNCTH3BwhTWZRV9MY3qvuKrOPawzXv-5J9Xz5_vF7IHOv315nE3n1NVcjZR3RitEyYThLdQd16YBWfdKtdLXnRadl43mAqTvWqcUAjIBLbTKo5TI6kl1e_Ldpvhzh3m0L3GXSqpshTKC14rLd6olrNGGwccxgduE7OxUc2aMbLgpqrt_qMrpcRNcHNCH8v8XIE6ASzHnhN5uU9hA2lvO7KE3e-rNlt7ssTcrClSfoLw9LArTW-L_UL8BcD2Z_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692136140</pqid></control><display><type>article</type><title>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</title><source>SpringerNature Journals</source><creator>Li, Fuxiao ; Wei, Xin ; Sun, Qinju ; Guo, Yan ; Liu, Jidong</creator><creatorcontrib>Li, Fuxiao ; Wei, Xin ; Sun, Qinju ; Guo, Yan ; Liu, Jidong</creatorcontrib><description>Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled Saccharomyces cerevisiae to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD + ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD + even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of GLT1 which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD + . Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD + for LA accumulation.</description><identifier>ISSN: 0972-1525</identifier><identifier>EISSN: 0974-0740</identifier><identifier>EISSN: 0972-1525</identifier><identifier>DOI: 10.1007/s12355-022-01142-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Accumulation ; Agriculture ; Biomedical and Life Sciences ; Engineering ; Fungi ; Gene regulation ; Glutamate ; L-Lactate dehydrogenase ; Lactate dehydrogenase ; Lactic acid ; Life Sciences ; Metabolic engineering ; Metabolism ; Microorganisms ; NAD ; NADH ; Nicotinamide adenine dinucleotide ; Physiological aspects ; Research Article ; Saccharomyces cerevisiae ; System effectiveness ; Yeast</subject><ispartof>Sugar tech : an international journal of sugar crops &amp; related industries, 2022-08, Vol.24 (4), p.1272-1283</ispartof><rights>The Author(s), under exclusive licence to Society for Sugar Research &amp; Promotion 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Society for Sugar Research &amp; Promotion 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</citedby><cites>FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</cites><orcidid>0000-0003-3269-1240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12355-022-01142-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12355-022-01142-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Fuxiao</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Sun, Qinju</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><title>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</title><title>Sugar tech : an international journal of sugar crops &amp; related industries</title><addtitle>Sugar Tech</addtitle><description>Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled Saccharomyces cerevisiae to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD + ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD + even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of GLT1 which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD + . Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD + for LA accumulation.</description><subject>Accumulation</subject><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Engineering</subject><subject>Fungi</subject><subject>Gene regulation</subject><subject>Glutamate</subject><subject>L-Lactate dehydrogenase</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Life Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>NAD</subject><subject>NADH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Physiological aspects</subject><subject>Research Article</subject><subject>Saccharomyces cerevisiae</subject><subject>System effectiveness</subject><subject>Yeast</subject><issn>0972-1525</issn><issn>0974-0740</issn><issn>0972-1525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrGzEQhZfQQFInfyAnQc5KJa1WWh2NSZuAS0vjnMWsdmQr2CtXWjf431e2C0mhFB2kEe97POZV1Q1nd5wx_SlzUTcNZUJQxrkUVJxVl8xoSZmW7MPxLShvRHNRfcz5hTEltDGX1ev3FPudG0McSPRkTudQBkemLvQkDOQJnFtBipu9w0wcJvwVcgAki1WKu-WKfMURurguyP2wDANiCsOSwNCTH3BwhTWZRV9MY3qvuKrOPawzXv-5J9Xz5_vF7IHOv315nE3n1NVcjZR3RitEyYThLdQd16YBWfdKtdLXnRadl43mAqTvWqcUAjIBLbTKo5TI6kl1e_Ldpvhzh3m0L3GXSqpshTKC14rLd6olrNGGwccxgduE7OxUc2aMbLgpqrt_qMrpcRNcHNCH8v8XIE6ASzHnhN5uU9hA2lvO7KE3e-rNlt7ssTcrClSfoLw9LArTW-L_UL8BcD2Z_g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Fuxiao</creator><creator>Wei, Xin</creator><creator>Sun, Qinju</creator><creator>Guo, Yan</creator><creator>Liu, Jidong</creator><general>Springer India</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3269-1240</orcidid></search><sort><creationdate>20220801</creationdate><title>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</title><author>Li, Fuxiao ; Wei, Xin ; Sun, Qinju ; Guo, Yan ; Liu, Jidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1b976ee402918a3b1795a43d6684f3b72bf45712a4fb8c66eae02a8a86fe44e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Engineering</topic><topic>Fungi</topic><topic>Gene regulation</topic><topic>Glutamate</topic><topic>L-Lactate dehydrogenase</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Life Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>NAD</topic><topic>NADH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Physiological aspects</topic><topic>Research Article</topic><topic>Saccharomyces cerevisiae</topic><topic>System effectiveness</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fuxiao</creatorcontrib><creatorcontrib>Wei, Xin</creatorcontrib><creatorcontrib>Sun, Qinju</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><collection>CrossRef</collection><jtitle>Sugar tech : an international journal of sugar crops &amp; related industries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fuxiao</au><au>Wei, Xin</au><au>Sun, Qinju</au><au>Guo, Yan</au><au>Liu, Jidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering</atitle><jtitle>Sugar tech : an international journal of sugar crops &amp; related industries</jtitle><stitle>Sugar Tech</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>1272</spage><epage>1283</epage><pages>1272-1283</pages><issn>0972-1525</issn><eissn>0974-0740</eissn><eissn>0972-1525</eissn><abstract>Microbial engineering based on synthetic biology can facilitate large-scale production of target products. In this study, the introduction of lactate dehydrogenase (LDH) enabled Saccharomyces cerevisiae to acquire the capacity for L-lactic acid (LA) production and the NADH/NAD + ratio from 0.228 to 0.156, while the subsequent modification of carbon metabolism pathway led to a rapid increase of NADH/NAD + even up to 0.337. By testing the effectiveness of four different redox systems, we demonstrated that dynamic regulation of additional redox genes to consume excessive NADH is more beneficial for LA accumulation, alleviating the negative effects of metabolic modification on hosts, and altering the distribution of metabolic flow. We first reported expression of GLT1 which coding glutamate synthase has the strongest ability to increase LA production and reduce NADH/NAD + . Combining metabolic engineering and cofactor engineering, the LA yield reached from 0.04 g/g to 0.37 g/g in YNB medium. Subsequently, strain PK27 produced 37.94 g/L LA with production yield of 0.66 g/g in YPD medium. Finally, the results could provide a reference that the potential under poor nutrient culture conditions and the direction and intensity of regulation of intracellular NADH/NAD + for LA accumulation.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12355-022-01142-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3269-1240</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0972-1525
ispartof Sugar tech : an international journal of sugar crops & related industries, 2022-08, Vol.24 (4), p.1272-1283
issn 0972-1525
0974-0740
0972-1525
language eng
recordid cdi_proquest_journals_2692136140
source SpringerNature Journals
subjects Accumulation
Agriculture
Biomedical and Life Sciences
Engineering
Fungi
Gene regulation
Glutamate
L-Lactate dehydrogenase
Lactate dehydrogenase
Lactic acid
Life Sciences
Metabolic engineering
Metabolism
Microorganisms
NAD
NADH
Nicotinamide adenine dinucleotide
Physiological aspects
Research Article
Saccharomyces cerevisiae
System effectiveness
Yeast
title Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20L-Lactic%20Acid%20in%20Saccharomyces%20cerevisiae%20Through%20Metabolic%20Engineering%20and%20Rational%20Cofactor%20Engineering&rft.jtitle=Sugar%20tech%20:%20an%20international%20journal%20of%20sugar%20crops%20&%20related%20industries&rft.au=Li,%20Fuxiao&rft.date=2022-08-01&rft.volume=24&rft.issue=4&rft.spage=1272&rft.epage=1283&rft.pages=1272-1283&rft.issn=0972-1525&rft.eissn=0974-0740&rft_id=info:doi/10.1007/s12355-022-01142-2&rft_dat=%3Cgale_proqu%3EA710994519%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692136140&rft_id=info:pmid/&rft_galeid=A710994519&rfr_iscdi=true