Atomically Dispersed CoN3C1‐TeN1C3 Diatomic Sites Anchored in N‐Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction

A encapsulation–adsorption–pyrolysis strategy for the construction of atomically dispersed Co‐Te diatomic sites (DASs) that are anchored in N‐doped carbon is reported as an efficient bifunctional catalyst for electrocatalytic hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-07, Vol.18 (29), p.n/a
Hauptverfasser: Wang, Minmin, Zheng, Xiuhui, Qin, Donglin, Li, Min, Sun, Kaian, Liu, Chuhao, Cheong, Weng‐Chon, Liu, Zhi, Chen, Yanju, Liu, Shoujie, Wang, Bin, Li, Yanpeng, Liu, Yunqi, Liu, Chenguang, Yang, Xuan, Feng, Xiang, Yang, Chaohe, Chen, Chen, Pan, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Wang, Minmin
Zheng, Xiuhui
Qin, Donglin
Li, Min
Sun, Kaian
Liu, Chuhao
Cheong, Weng‐Chon
Liu, Zhi
Chen, Yanju
Liu, Shoujie
Wang, Bin
Li, Yanpeng
Liu, Yunqi
Liu, Chenguang
Yang, Xuan
Feng, Xiang
Yang, Chaohe
Chen, Chen
Pan, Yuan
description A encapsulation–adsorption–pyrolysis strategy for the construction of atomically dispersed Co‐Te diatomic sites (DASs) that are anchored in N‐doped carbon is reported as an efficient bifunctional catalyst for electrocatalytic hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The as‐constructed catalyst shows the stable CoN3C1‐TeN1C3 coordination structure before and after HER and ORR. The *OOH/*H intermediate species are captured by in situ Raman and in situ attenuated total reflectance‐surface enhanced infrared absorption spectroscopy, indicating that the reactant O2/H2O molecule has a strong interaction with the Co site, revealing that Coδ+ is an effective active site. Theoretical calculations show that the Coδ+ has adsorption‐activation function and the neighboring Teδ+ acts as an electron donor adjusting the electronic structure of Coδ+, promoting the dissociation of H2O molecules and the adsorption of H and oxygen‐containing intermediates in HER and ORR. In the meanwhile, the nearest C atom around Co also profoundly affects the adsorption of H atoms. This results in the weakening of the OH adsorption and enhancement of H adsorption, as well as the more stable water molecule dissociation transition state, thus significantly boosting ORR and HER performance. The Co‐Te diatomic sites (DASs) with special CoN3C1‐TeN1C3 coordination structure anchored in N‐doped carbon are constructed by an encapsulation–adsorption–pyrolysis strategy, which serves as an efficient bifunctional catalysts for synergistic electrocatalysis of HER and ORR. This work provides numerous new opportunities for the rational design and artificial synthesis of DASs catalysts for energy conversion.
doi_str_mv 10.1002/smll.202201974
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2692016886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692016886</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2734-e92dcdee165bcb62edcd77c51087fdf2c1f8cdd014f77b6d6cb91eefc7e38ad93</originalsourceid><addsrcrecordid>eNo9kctO3DAUhqMKpHLbsrbEeqjtDHayHMK0VJoOUoeuI8c-BiOPHWynkB2PwAP1afokdYZqVuf2nV865y-Kc4IvCcb0S9xae0kxpZjUfP6pOCKMlDNW0fpgnxP8uTiO8QnjktA5Pyr-LJLfGimsHdGNiT2ECAo1fl025O_b-z2sSVPmidhhaGMSRLRw8tGHzBmH1pm68f20JELnHRIRLbU20oBL6NrowclkvBM2A0nYMSakfUCb0UF4MDFl1aUFmYKXu_nUuB1V8A_g0PK3t8O0joRT6O51nJo_QQ07zdPiUAsb4ex_PCl-fV3eN7ez1d23781iNespL-czqKmSCoCwq052jEKuOJdXBFdcK00l0ZVUCpO55rxjismuJgBacigroerypLj40O2Dfx4gpvbJDyGfFFvK6vxvVlUsU_UH9WIsjG0fzFaEsSW4nexpJ3vavT3t5sdqta_Kf9S_jTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692016886</pqid></control><display><type>article</type><title>Atomically Dispersed CoN3C1‐TeN1C3 Diatomic Sites Anchored in N‐Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction</title><source>Wiley-Blackwell Journals</source><creator>Wang, Minmin ; Zheng, Xiuhui ; Qin, Donglin ; Li, Min ; Sun, Kaian ; Liu, Chuhao ; Cheong, Weng‐Chon ; Liu, Zhi ; Chen, Yanju ; Liu, Shoujie ; Wang, Bin ; Li, Yanpeng ; Liu, Yunqi ; Liu, Chenguang ; Yang, Xuan ; Feng, Xiang ; Yang, Chaohe ; Chen, Chen ; Pan, Yuan</creator><creatorcontrib>Wang, Minmin ; Zheng, Xiuhui ; Qin, Donglin ; Li, Min ; Sun, Kaian ; Liu, Chuhao ; Cheong, Weng‐Chon ; Liu, Zhi ; Chen, Yanju ; Liu, Shoujie ; Wang, Bin ; Li, Yanpeng ; Liu, Yunqi ; Liu, Chenguang ; Yang, Xuan ; Feng, Xiang ; Yang, Chaohe ; Chen, Chen ; Pan, Yuan</creatorcontrib><description>A encapsulation–adsorption–pyrolysis strategy for the construction of atomically dispersed Co‐Te diatomic sites (DASs) that are anchored in N‐doped carbon is reported as an efficient bifunctional catalyst for electrocatalytic hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The as‐constructed catalyst shows the stable CoN3C1‐TeN1C3 coordination structure before and after HER and ORR. The *OOH/*H intermediate species are captured by in situ Raman and in situ attenuated total reflectance‐surface enhanced infrared absorption spectroscopy, indicating that the reactant O2/H2O molecule has a strong interaction with the Co site, revealing that Coδ+ is an effective active site. Theoretical calculations show that the Coδ+ has adsorption‐activation function and the neighboring Teδ+ acts as an electron donor adjusting the electronic structure of Coδ+, promoting the dissociation of H2O molecules and the adsorption of H and oxygen‐containing intermediates in HER and ORR. In the meanwhile, the nearest C atom around Co also profoundly affects the adsorption of H atoms. This results in the weakening of the OH adsorption and enhancement of H adsorption, as well as the more stable water molecule dissociation transition state, thus significantly boosting ORR and HER performance. The Co‐Te diatomic sites (DASs) with special CoN3C1‐TeN1C3 coordination structure anchored in N‐doped carbon are constructed by an encapsulation–adsorption–pyrolysis strategy, which serves as an efficient bifunctional catalysts for synergistic electrocatalysis of HER and ORR. This work provides numerous new opportunities for the rational design and artificial synthesis of DASs catalysts for energy conversion.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202201974</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; bifunctional catalysts ; Carbon ; Catalysts ; Chemical reduction ; diatomic active sites ; Dispersion ; electrochemistry ; Electronic structure ; encapsulation‐adsorption‐pyrolysis strategy ; extended X‐ray absorption fine structure (EXAFS) ; Hydrogen evolution reactions ; Infrared absorption ; Nanotechnology ; Oxygen reduction reactions ; Pyrolysis ; Strong interactions (field theory)</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-07, Vol.18 (29), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2284-236X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202201974$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202201974$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Wang, Minmin</creatorcontrib><creatorcontrib>Zheng, Xiuhui</creatorcontrib><creatorcontrib>Qin, Donglin</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Sun, Kaian</creatorcontrib><creatorcontrib>Liu, Chuhao</creatorcontrib><creatorcontrib>Cheong, Weng‐Chon</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Chen, Yanju</creatorcontrib><creatorcontrib>Liu, Shoujie</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Li, Yanpeng</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Liu, Chenguang</creatorcontrib><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Feng, Xiang</creatorcontrib><creatorcontrib>Yang, Chaohe</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><title>Atomically Dispersed CoN3C1‐TeN1C3 Diatomic Sites Anchored in N‐Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>A encapsulation–adsorption–pyrolysis strategy for the construction of atomically dispersed Co‐Te diatomic sites (DASs) that are anchored in N‐doped carbon is reported as an efficient bifunctional catalyst for electrocatalytic hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The as‐constructed catalyst shows the stable CoN3C1‐TeN1C3 coordination structure before and after HER and ORR. The *OOH/*H intermediate species are captured by in situ Raman and in situ attenuated total reflectance‐surface enhanced infrared absorption spectroscopy, indicating that the reactant O2/H2O molecule has a strong interaction with the Co site, revealing that Coδ+ is an effective active site. Theoretical calculations show that the Coδ+ has adsorption‐activation function and the neighboring Teδ+ acts as an electron donor adjusting the electronic structure of Coδ+, promoting the dissociation of H2O molecules and the adsorption of H and oxygen‐containing intermediates in HER and ORR. In the meanwhile, the nearest C atom around Co also profoundly affects the adsorption of H atoms. This results in the weakening of the OH adsorption and enhancement of H adsorption, as well as the more stable water molecule dissociation transition state, thus significantly boosting ORR and HER performance. The Co‐Te diatomic sites (DASs) with special CoN3C1‐TeN1C3 coordination structure anchored in N‐doped carbon are constructed by an encapsulation–adsorption–pyrolysis strategy, which serves as an efficient bifunctional catalysts for synergistic electrocatalysis of HER and ORR. This work provides numerous new opportunities for the rational design and artificial synthesis of DASs catalysts for energy conversion.</description><subject>Adsorption</subject><subject>bifunctional catalysts</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>diatomic active sites</subject><subject>Dispersion</subject><subject>electrochemistry</subject><subject>Electronic structure</subject><subject>encapsulation‐adsorption‐pyrolysis strategy</subject><subject>extended X‐ray absorption fine structure (EXAFS)</subject><subject>Hydrogen evolution reactions</subject><subject>Infrared absorption</subject><subject>Nanotechnology</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Strong interactions (field theory)</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kctO3DAUhqMKpHLbsrbEeqjtDHayHMK0VJoOUoeuI8c-BiOPHWynkB2PwAP1afokdYZqVuf2nV865y-Kc4IvCcb0S9xae0kxpZjUfP6pOCKMlDNW0fpgnxP8uTiO8QnjktA5Pyr-LJLfGimsHdGNiT2ECAo1fl025O_b-z2sSVPmidhhaGMSRLRw8tGHzBmH1pm68f20JELnHRIRLbU20oBL6NrowclkvBM2A0nYMSakfUCb0UF4MDFl1aUFmYKXu_nUuB1V8A_g0PK3t8O0joRT6O51nJo_QQ07zdPiUAsb4ex_PCl-fV3eN7ez1d23781iNespL-czqKmSCoCwq052jEKuOJdXBFdcK00l0ZVUCpO55rxjismuJgBacigroerypLj40O2Dfx4gpvbJDyGfFFvK6vxvVlUsU_UH9WIsjG0fzFaEsSW4nexpJ3vavT3t5sdqta_Kf9S_jTg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wang, Minmin</creator><creator>Zheng, Xiuhui</creator><creator>Qin, Donglin</creator><creator>Li, Min</creator><creator>Sun, Kaian</creator><creator>Liu, Chuhao</creator><creator>Cheong, Weng‐Chon</creator><creator>Liu, Zhi</creator><creator>Chen, Yanju</creator><creator>Liu, Shoujie</creator><creator>Wang, Bin</creator><creator>Li, Yanpeng</creator><creator>Liu, Yunqi</creator><creator>Liu, Chenguang</creator><creator>Yang, Xuan</creator><creator>Feng, Xiang</creator><creator>Yang, Chaohe</creator><creator>Chen, Chen</creator><creator>Pan, Yuan</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2284-236X</orcidid></search><sort><creationdate>20220701</creationdate><title>Atomically Dispersed CoN3C1‐TeN1C3 Diatomic Sites Anchored in N‐Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction</title><author>Wang, Minmin ; Zheng, Xiuhui ; Qin, Donglin ; Li, Min ; Sun, Kaian ; Liu, Chuhao ; Cheong, Weng‐Chon ; Liu, Zhi ; Chen, Yanju ; Liu, Shoujie ; Wang, Bin ; Li, Yanpeng ; Liu, Yunqi ; Liu, Chenguang ; Yang, Xuan ; Feng, Xiang ; Yang, Chaohe ; Chen, Chen ; Pan, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2734-e92dcdee165bcb62edcd77c51087fdf2c1f8cdd014f77b6d6cb91eefc7e38ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>bifunctional catalysts</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>diatomic active sites</topic><topic>Dispersion</topic><topic>electrochemistry</topic><topic>Electronic structure</topic><topic>encapsulation‐adsorption‐pyrolysis strategy</topic><topic>extended X‐ray absorption fine structure (EXAFS)</topic><topic>Hydrogen evolution reactions</topic><topic>Infrared absorption</topic><topic>Nanotechnology</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Strong interactions (field theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Minmin</creatorcontrib><creatorcontrib>Zheng, Xiuhui</creatorcontrib><creatorcontrib>Qin, Donglin</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Sun, Kaian</creatorcontrib><creatorcontrib>Liu, Chuhao</creatorcontrib><creatorcontrib>Cheong, Weng‐Chon</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Chen, Yanju</creatorcontrib><creatorcontrib>Liu, Shoujie</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Li, Yanpeng</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Liu, Chenguang</creatorcontrib><creatorcontrib>Yang, Xuan</creatorcontrib><creatorcontrib>Feng, Xiang</creatorcontrib><creatorcontrib>Yang, Chaohe</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Minmin</au><au>Zheng, Xiuhui</au><au>Qin, Donglin</au><au>Li, Min</au><au>Sun, Kaian</au><au>Liu, Chuhao</au><au>Cheong, Weng‐Chon</au><au>Liu, Zhi</au><au>Chen, Yanju</au><au>Liu, Shoujie</au><au>Wang, Bin</au><au>Li, Yanpeng</au><au>Liu, Yunqi</au><au>Liu, Chenguang</au><au>Yang, Xuan</au><au>Feng, Xiang</au><au>Yang, Chaohe</au><au>Chen, Chen</au><au>Pan, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically Dispersed CoN3C1‐TeN1C3 Diatomic Sites Anchored in N‐Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>29</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A encapsulation–adsorption–pyrolysis strategy for the construction of atomically dispersed Co‐Te diatomic sites (DASs) that are anchored in N‐doped carbon is reported as an efficient bifunctional catalyst for electrocatalytic hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The as‐constructed catalyst shows the stable CoN3C1‐TeN1C3 coordination structure before and after HER and ORR. The *OOH/*H intermediate species are captured by in situ Raman and in situ attenuated total reflectance‐surface enhanced infrared absorption spectroscopy, indicating that the reactant O2/H2O molecule has a strong interaction with the Co site, revealing that Coδ+ is an effective active site. Theoretical calculations show that the Coδ+ has adsorption‐activation function and the neighboring Teδ+ acts as an electron donor adjusting the electronic structure of Coδ+, promoting the dissociation of H2O molecules and the adsorption of H and oxygen‐containing intermediates in HER and ORR. In the meanwhile, the nearest C atom around Co also profoundly affects the adsorption of H atoms. This results in the weakening of the OH adsorption and enhancement of H adsorption, as well as the more stable water molecule dissociation transition state, thus significantly boosting ORR and HER performance. The Co‐Te diatomic sites (DASs) with special CoN3C1‐TeN1C3 coordination structure anchored in N‐doped carbon are constructed by an encapsulation–adsorption–pyrolysis strategy, which serves as an efficient bifunctional catalysts for synergistic electrocatalysis of HER and ORR. This work provides numerous new opportunities for the rational design and artificial synthesis of DASs catalysts for energy conversion.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202201974</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2284-236X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-07, Vol.18 (29), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2692016886
source Wiley-Blackwell Journals
subjects Adsorption
bifunctional catalysts
Carbon
Catalysts
Chemical reduction
diatomic active sites
Dispersion
electrochemistry
Electronic structure
encapsulation‐adsorption‐pyrolysis strategy
extended X‐ray absorption fine structure (EXAFS)
Hydrogen evolution reactions
Infrared absorption
Nanotechnology
Oxygen reduction reactions
Pyrolysis
Strong interactions (field theory)
title Atomically Dispersed CoN3C1‐TeN1C3 Diatomic Sites Anchored in N‐Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20Dispersed%20CoN3C1%E2%80%90TeN1C3%20Diatomic%20Sites%20Anchored%20in%20N%E2%80%90Doped%20Carbon%20as%20Efficient%20Bifunctional%20Catalyst%20for%20Synergistic%20Electrocatalytic%20Hydrogen%20Evolution%20and%20Oxygen%20Reduction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Minmin&rft.date=2022-07-01&rft.volume=18&rft.issue=29&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202201974&rft_dat=%3Cproquest_wiley%3E2692016886%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692016886&rft_id=info:pmid/&rfr_iscdi=true