Online Binary Models are Promising for Distinguishing Temporally Consistent Computer Usage Profiles

This paper investigates whether computer usage profiles comprised of process-, network-, mouse-, and keystroke-related events are unique and consistent over time in a naturalistic setting, discussing challenges and opportunities of using such profiles in applications of continuous authentication. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biometrics, behavior, and identity science behavior, and identity science, 2022-07, Vol.4 (3), p.412-423
Hauptverfasser: Giovanini, Luiz, Ceschin, Fabricio, Silva, Mirela, Chen, Aokun, Kulkarni, Ramchandra, Banda, Sanjay, Lysaght, Madison, Qiao, Heng, Sapountzis, Nikolaos, Sun, Ruimin, Matthews, Brandon, Wu, Dapeng Oliver, Gregio, Andre, Oliveira, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 3
container_start_page 412
container_title IEEE transactions on biometrics, behavior, and identity science
container_volume 4
creator Giovanini, Luiz
Ceschin, Fabricio
Silva, Mirela
Chen, Aokun
Kulkarni, Ramchandra
Banda, Sanjay
Lysaght, Madison
Qiao, Heng
Sapountzis, Nikolaos
Sun, Ruimin
Matthews, Brandon
Wu, Dapeng Oliver
Gregio, Andre
Oliveira, Daniela
description This paper investigates whether computer usage profiles comprised of process-, network-, mouse-, and keystroke-related events are unique and consistent over time in a naturalistic setting, discussing challenges and opportunities of using such profiles in applications of continuous authentication. We collected ecologically-valid computer usage profiles from 31 MS Windows 10 computer users over 8 weeks and submitted this data to comprehensive machine learning analysis involving a diverse set of online and offline classifiers. We found that: (i) profiles were mostly consistent over the 8-week data collection period, with most (83.9%) repeating computer usage habits on a daily basis; (ii) computer usage profiling has the potential to uniquely characterize computer users (with a maximum F-score of 99.90%); (iii) network-related events were the most relevant features to accurately recognize profiles (95.69% of the top features distinguishing users were network-related); and (iv) binary models were the most well-suited for profile recognition, with better results achieved in the online setting compared to the offline setting (maximum F-score of 99.90% vs. 95.50%).
doi_str_mv 10.1109/TBIOM.2022.3179206
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2691875787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9786768</ieee_id><sourcerecordid>2691875787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d96a09b0f020685205fb17651968d1493d4797af90c36c792c76a9eba32a10283</originalsourceid><addsrcrecordid>eNpNUMtqwzAQFKWFhjQ_0F4EPTtdybYexyZ9BRLSQ3IWii2nCrblSvahf1_lQSks7LC7M7s7CN0TmBIC8mkzW6xXUwqUTlPCJQV2hUaUpTxhGfDrf_gWTUI4AACFTMYYoWLd1rY1eGZb7X_wypWmDlh7gz-9a2yw7R5XzuMXG_qIBxu-jqWNaTrndV3_4LlrQ2yato-w6YbeeLwNen9SqGxtwh26qXQdzOSSx2j79rqZfyTL9fti_rxMCirzPikl0yB3UMXrmMgp5NWOcJYTyURJMpmWGZdcVxKKlBXxz4IzLc1Op1QToCIdo8ezbufd92BCrw5u8G1cqSiTRPCcCx6n6Hmq8C4EbyrVedvE5xUBdfRTnfxURz_Vxc9IejiTrDHmjyC5YJyJ9BdsXXFL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691875787</pqid></control><display><type>article</type><title>Online Binary Models are Promising for Distinguishing Temporally Consistent Computer Usage Profiles</title><source>IEEE Electronic Library (IEL)</source><creator>Giovanini, Luiz ; Ceschin, Fabricio ; Silva, Mirela ; Chen, Aokun ; Kulkarni, Ramchandra ; Banda, Sanjay ; Lysaght, Madison ; Qiao, Heng ; Sapountzis, Nikolaos ; Sun, Ruimin ; Matthews, Brandon ; Wu, Dapeng Oliver ; Gregio, Andre ; Oliveira, Daniela</creator><creatorcontrib>Giovanini, Luiz ; Ceschin, Fabricio ; Silva, Mirela ; Chen, Aokun ; Kulkarni, Ramchandra ; Banda, Sanjay ; Lysaght, Madison ; Qiao, Heng ; Sapountzis, Nikolaos ; Sun, Ruimin ; Matthews, Brandon ; Wu, Dapeng Oliver ; Gregio, Andre ; Oliveira, Daniela</creatorcontrib><description>This paper investigates whether computer usage profiles comprised of process-, network-, mouse-, and keystroke-related events are unique and consistent over time in a naturalistic setting, discussing challenges and opportunities of using such profiles in applications of continuous authentication. We collected ecologically-valid computer usage profiles from 31 MS Windows 10 computer users over 8 weeks and submitted this data to comprehensive machine learning analysis involving a diverse set of online and offline classifiers. We found that: (i) profiles were mostly consistent over the 8-week data collection period, with most (83.9%) repeating computer usage habits on a daily basis; (ii) computer usage profiling has the potential to uniquely characterize computer users (with a maximum F-score of 99.90%); (iii) network-related events were the most relevant features to accurately recognize profiles (95.69% of the top features distinguishing users were network-related); and (iv) binary models were the most well-suited for profile recognition, with better results achieved in the online setting compared to the offline setting (maximum F-score of 99.90% vs. 95.50%).</description><identifier>ISSN: 2637-6407</identifier><identifier>EISSN: 2637-6407</identifier><identifier>DOI: 10.1109/TBIOM.2022.3179206</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Behavioral sciences ; Biological system modeling ; Biometrics (access control) ; Computational modeling ; Computer security ; Computer user profiling ; continuous authentication ; Data collection ; Feature recognition ; Jointly owned property ; Machine learning ; Operating systems ; time series analysis ; user study ; Windows (computer programs)</subject><ispartof>IEEE transactions on biometrics, behavior, and identity science, 2022-07, Vol.4 (3), p.412-423</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d96a09b0f020685205fb17651968d1493d4797af90c36c792c76a9eba32a10283</citedby><cites>FETCH-LOGICAL-c295t-d96a09b0f020685205fb17651968d1493d4797af90c36c792c76a9eba32a10283</cites><orcidid>0000-0003-3488-0053 ; 0000-0003-1766-5757 ; 0000-0001-6853-8083 ; 0000-0002-2617-0847 ; 0000-0003-2940-5549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9786768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9786768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Giovanini, Luiz</creatorcontrib><creatorcontrib>Ceschin, Fabricio</creatorcontrib><creatorcontrib>Silva, Mirela</creatorcontrib><creatorcontrib>Chen, Aokun</creatorcontrib><creatorcontrib>Kulkarni, Ramchandra</creatorcontrib><creatorcontrib>Banda, Sanjay</creatorcontrib><creatorcontrib>Lysaght, Madison</creatorcontrib><creatorcontrib>Qiao, Heng</creatorcontrib><creatorcontrib>Sapountzis, Nikolaos</creatorcontrib><creatorcontrib>Sun, Ruimin</creatorcontrib><creatorcontrib>Matthews, Brandon</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><creatorcontrib>Gregio, Andre</creatorcontrib><creatorcontrib>Oliveira, Daniela</creatorcontrib><title>Online Binary Models are Promising for Distinguishing Temporally Consistent Computer Usage Profiles</title><title>IEEE transactions on biometrics, behavior, and identity science</title><addtitle>TBIOM</addtitle><description>This paper investigates whether computer usage profiles comprised of process-, network-, mouse-, and keystroke-related events are unique and consistent over time in a naturalistic setting, discussing challenges and opportunities of using such profiles in applications of continuous authentication. We collected ecologically-valid computer usage profiles from 31 MS Windows 10 computer users over 8 weeks and submitted this data to comprehensive machine learning analysis involving a diverse set of online and offline classifiers. We found that: (i) profiles were mostly consistent over the 8-week data collection period, with most (83.9%) repeating computer usage habits on a daily basis; (ii) computer usage profiling has the potential to uniquely characterize computer users (with a maximum F-score of 99.90%); (iii) network-related events were the most relevant features to accurately recognize profiles (95.69% of the top features distinguishing users were network-related); and (iv) binary models were the most well-suited for profile recognition, with better results achieved in the online setting compared to the offline setting (maximum F-score of 99.90% vs. 95.50%).</description><subject>Analytical models</subject><subject>Behavioral sciences</subject><subject>Biological system modeling</subject><subject>Biometrics (access control)</subject><subject>Computational modeling</subject><subject>Computer security</subject><subject>Computer user profiling</subject><subject>continuous authentication</subject><subject>Data collection</subject><subject>Feature recognition</subject><subject>Jointly owned property</subject><subject>Machine learning</subject><subject>Operating systems</subject><subject>time series analysis</subject><subject>user study</subject><subject>Windows (computer programs)</subject><issn>2637-6407</issn><issn>2637-6407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtqwzAQFKWFhjQ_0F4EPTtdybYexyZ9BRLSQ3IWii2nCrblSvahf1_lQSks7LC7M7s7CN0TmBIC8mkzW6xXUwqUTlPCJQV2hUaUpTxhGfDrf_gWTUI4AACFTMYYoWLd1rY1eGZb7X_wypWmDlh7gz-9a2yw7R5XzuMXG_qIBxu-jqWNaTrndV3_4LlrQ2yato-w6YbeeLwNen9SqGxtwh26qXQdzOSSx2j79rqZfyTL9fti_rxMCirzPikl0yB3UMXrmMgp5NWOcJYTyURJMpmWGZdcVxKKlBXxz4IzLc1Op1QToCIdo8ezbufd92BCrw5u8G1cqSiTRPCcCx6n6Hmq8C4EbyrVedvE5xUBdfRTnfxURz_Vxc9IejiTrDHmjyC5YJyJ9BdsXXFL</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Giovanini, Luiz</creator><creator>Ceschin, Fabricio</creator><creator>Silva, Mirela</creator><creator>Chen, Aokun</creator><creator>Kulkarni, Ramchandra</creator><creator>Banda, Sanjay</creator><creator>Lysaght, Madison</creator><creator>Qiao, Heng</creator><creator>Sapountzis, Nikolaos</creator><creator>Sun, Ruimin</creator><creator>Matthews, Brandon</creator><creator>Wu, Dapeng Oliver</creator><creator>Gregio, Andre</creator><creator>Oliveira, Daniela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3488-0053</orcidid><orcidid>https://orcid.org/0000-0003-1766-5757</orcidid><orcidid>https://orcid.org/0000-0001-6853-8083</orcidid><orcidid>https://orcid.org/0000-0002-2617-0847</orcidid><orcidid>https://orcid.org/0000-0003-2940-5549</orcidid></search><sort><creationdate>20220701</creationdate><title>Online Binary Models are Promising for Distinguishing Temporally Consistent Computer Usage Profiles</title><author>Giovanini, Luiz ; Ceschin, Fabricio ; Silva, Mirela ; Chen, Aokun ; Kulkarni, Ramchandra ; Banda, Sanjay ; Lysaght, Madison ; Qiao, Heng ; Sapountzis, Nikolaos ; Sun, Ruimin ; Matthews, Brandon ; Wu, Dapeng Oliver ; Gregio, Andre ; Oliveira, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d96a09b0f020685205fb17651968d1493d4797af90c36c792c76a9eba32a10283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Behavioral sciences</topic><topic>Biological system modeling</topic><topic>Biometrics (access control)</topic><topic>Computational modeling</topic><topic>Computer security</topic><topic>Computer user profiling</topic><topic>continuous authentication</topic><topic>Data collection</topic><topic>Feature recognition</topic><topic>Jointly owned property</topic><topic>Machine learning</topic><topic>Operating systems</topic><topic>time series analysis</topic><topic>user study</topic><topic>Windows (computer programs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giovanini, Luiz</creatorcontrib><creatorcontrib>Ceschin, Fabricio</creatorcontrib><creatorcontrib>Silva, Mirela</creatorcontrib><creatorcontrib>Chen, Aokun</creatorcontrib><creatorcontrib>Kulkarni, Ramchandra</creatorcontrib><creatorcontrib>Banda, Sanjay</creatorcontrib><creatorcontrib>Lysaght, Madison</creatorcontrib><creatorcontrib>Qiao, Heng</creatorcontrib><creatorcontrib>Sapountzis, Nikolaos</creatorcontrib><creatorcontrib>Sun, Ruimin</creatorcontrib><creatorcontrib>Matthews, Brandon</creatorcontrib><creatorcontrib>Wu, Dapeng Oliver</creatorcontrib><creatorcontrib>Gregio, Andre</creatorcontrib><creatorcontrib>Oliveira, Daniela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giovanini, Luiz</au><au>Ceschin, Fabricio</au><au>Silva, Mirela</au><au>Chen, Aokun</au><au>Kulkarni, Ramchandra</au><au>Banda, Sanjay</au><au>Lysaght, Madison</au><au>Qiao, Heng</au><au>Sapountzis, Nikolaos</au><au>Sun, Ruimin</au><au>Matthews, Brandon</au><au>Wu, Dapeng Oliver</au><au>Gregio, Andre</au><au>Oliveira, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Binary Models are Promising for Distinguishing Temporally Consistent Computer Usage Profiles</atitle><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle><stitle>TBIOM</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>4</volume><issue>3</issue><spage>412</spage><epage>423</epage><pages>412-423</pages><issn>2637-6407</issn><eissn>2637-6407</eissn><abstract>This paper investigates whether computer usage profiles comprised of process-, network-, mouse-, and keystroke-related events are unique and consistent over time in a naturalistic setting, discussing challenges and opportunities of using such profiles in applications of continuous authentication. We collected ecologically-valid computer usage profiles from 31 MS Windows 10 computer users over 8 weeks and submitted this data to comprehensive machine learning analysis involving a diverse set of online and offline classifiers. We found that: (i) profiles were mostly consistent over the 8-week data collection period, with most (83.9%) repeating computer usage habits on a daily basis; (ii) computer usage profiling has the potential to uniquely characterize computer users (with a maximum F-score of 99.90%); (iii) network-related events were the most relevant features to accurately recognize profiles (95.69% of the top features distinguishing users were network-related); and (iv) binary models were the most well-suited for profile recognition, with better results achieved in the online setting compared to the offline setting (maximum F-score of 99.90% vs. 95.50%).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBIOM.2022.3179206</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3488-0053</orcidid><orcidid>https://orcid.org/0000-0003-1766-5757</orcidid><orcidid>https://orcid.org/0000-0001-6853-8083</orcidid><orcidid>https://orcid.org/0000-0002-2617-0847</orcidid><orcidid>https://orcid.org/0000-0003-2940-5549</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2637-6407
ispartof IEEE transactions on biometrics, behavior, and identity science, 2022-07, Vol.4 (3), p.412-423
issn 2637-6407
2637-6407
language eng
recordid cdi_proquest_journals_2691875787
source IEEE Electronic Library (IEL)
subjects Analytical models
Behavioral sciences
Biological system modeling
Biometrics (access control)
Computational modeling
Computer security
Computer user profiling
continuous authentication
Data collection
Feature recognition
Jointly owned property
Machine learning
Operating systems
time series analysis
user study
Windows (computer programs)
title Online Binary Models are Promising for Distinguishing Temporally Consistent Computer Usage Profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Binary%20Models%20are%20Promising%20for%20Distinguishing%20Temporally%20Consistent%20Computer%20Usage%20Profiles&rft.jtitle=IEEE%20transactions%20on%20biometrics,%20behavior,%20and%20identity%20science&rft.au=Giovanini,%20Luiz&rft.date=2022-07-01&rft.volume=4&rft.issue=3&rft.spage=412&rft.epage=423&rft.pages=412-423&rft.issn=2637-6407&rft.eissn=2637-6407&rft_id=info:doi/10.1109/TBIOM.2022.3179206&rft_dat=%3Cproquest_RIE%3E2691875787%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691875787&rft_id=info:pmid/&rft_ieee_id=9786768&rfr_iscdi=true