Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions

In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2022-09, Vol.32 (9), Article 241
Hauptverfasser: Liu, Zhenhai, Zeng, Shengda, Gasiński, Leszek, Kim, Yun-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title The Journal of Geometric Analysis
container_volume 32
creator Liu, Zhenhai
Zeng, Shengda
Gasiński, Leszek
Kim, Yun-Ho
description In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP.
doi_str_mv 10.1007/s12220-022-00977-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2691813395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710881186</galeid><sourcerecordid>A710881186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</originalsourceid><addsrcrecordid>eNp9kMtOxCAUhhujiePlBVyRuK4CLZcux_GaTNRETdwhpacjpoUROuq8vYw1cWdYwOF8H5c_y44IPiEYi9NIKKU4x5TmGFdC5GQrmxDGqlTS5-20xgznvKJ8N9uL8Q3jkhelmGQvt9513ugOnftV3QG6f9UR0Mz3yw56cIMOdlijh3UcoI_o0w6vqek-wAzWO_QIoUfaNai3X9CgM79yjQ7rDdLYDREPsp1WdxEOf-f97Ony4nF2nc_vrm5m03luCiaHvGJVq6lhpa5rRkXDORcMt6aRtWz5pqxqWerUpQXUBWlrxjABINgQIWRZ7GfH47nL4N9XEAf15lfBpSsV5RWRpCgqlqiTkVroDpR1rR-CNmk00FvjHbQ27U8FwVISInkS6CiY4GMM0KplsH36oiJYbaJXY_QqRa9-olckScUoxQS7BYS_t_xjfQNdLIc9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691813395</pqid></control><display><type>article</type><title>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Zhenhai ; Zeng, Shengda ; Gasiński, Leszek ; Kim, Yun-Ho</creator><creatorcontrib>Liu, Zhenhai ; Zeng, Shengda ; Gasiński, Leszek ; Kim, Yun-Ho</creatorcontrib><description>In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-022-00977-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximation ; Boundary conditions ; Convection ; Convex and Discrete Geometry ; Differential equations ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Existence theorems ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>The Journal of Geometric Analysis, 2022-09, Vol.32 (9), Article 241</ispartof><rights>Mathematica Josephina, Inc. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Mathematica Josephina, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</citedby><cites>FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</cites><orcidid>0000-0003-1818-842X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-022-00977-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-022-00977-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Zeng, Shengda</creatorcontrib><creatorcontrib>Gasiński, Leszek</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><title>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Convection</subject><subject>Convex and Discrete Geometry</subject><subject>Differential equations</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Existence theorems</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxCAUhhujiePlBVyRuK4CLZcux_GaTNRETdwhpacjpoUROuq8vYw1cWdYwOF8H5c_y44IPiEYi9NIKKU4x5TmGFdC5GQrmxDGqlTS5-20xgznvKJ8N9uL8Q3jkhelmGQvt9513ugOnftV3QG6f9UR0Mz3yw56cIMOdlijh3UcoI_o0w6vqek-wAzWO_QIoUfaNai3X9CgM79yjQ7rDdLYDREPsp1WdxEOf-f97Ony4nF2nc_vrm5m03luCiaHvGJVq6lhpa5rRkXDORcMt6aRtWz5pqxqWerUpQXUBWlrxjABINgQIWRZ7GfH47nL4N9XEAf15lfBpSsV5RWRpCgqlqiTkVroDpR1rR-CNmk00FvjHbQ27U8FwVISInkS6CiY4GMM0KplsH36oiJYbaJXY_QqRa9-olckScUoxQS7BYS_t_xjfQNdLIc9</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Zhenhai</creator><creator>Zeng, Shengda</creator><creator>Gasiński, Leszek</creator><creator>Kim, Yun-Ho</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0003-1818-842X</orcidid></search><sort><creationdate>20220901</creationdate><title>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</title><author>Liu, Zhenhai ; Zeng, Shengda ; Gasiński, Leszek ; Kim, Yun-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Convection</topic><topic>Convex and Discrete Geometry</topic><topic>Differential equations</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Existence theorems</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Zeng, Shengda</creatorcontrib><creatorcontrib>Gasiński, Leszek</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhenhai</au><au>Zeng, Shengda</au><au>Gasiński, Leszek</au><au>Kim, Yun-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>9</issue><artnum>241</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-022-00977-1</doi><orcidid>https://orcid.org/0000-0003-1818-842X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2022-09, Vol.32 (9), Article 241
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2691813395
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Approximation
Boundary conditions
Convection
Convex and Discrete Geometry
Differential equations
Differential Geometry
Dynamical Systems and Ergodic Theory
Existence theorems
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
Operators (mathematics)
title Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20Double%20Phase%20Complementarity%20Systems%20with%20Convection%20Term%20and%20mixed%20Boundary%20Conditions&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Liu,%20Zhenhai&rft.date=2022-09-01&rft.volume=32&rft.issue=9&rft.artnum=241&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-022-00977-1&rft_dat=%3Cgale_proqu%3EA710881186%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691813395&rft_id=info:pmid/&rft_galeid=A710881186&rfr_iscdi=true