Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions
In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized m...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-09, Vol.32 (9), Article 241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | The Journal of Geometric Analysis |
container_volume | 32 |
creator | Liu, Zhenhai Zeng, Shengda Gasiński, Leszek Kim, Yun-Ho |
description | In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP. |
doi_str_mv | 10.1007/s12220-022-00977-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2691813395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710881186</galeid><sourcerecordid>A710881186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</originalsourceid><addsrcrecordid>eNp9kMtOxCAUhhujiePlBVyRuK4CLZcux_GaTNRETdwhpacjpoUROuq8vYw1cWdYwOF8H5c_y44IPiEYi9NIKKU4x5TmGFdC5GQrmxDGqlTS5-20xgznvKJ8N9uL8Q3jkhelmGQvt9513ugOnftV3QG6f9UR0Mz3yw56cIMOdlijh3UcoI_o0w6vqek-wAzWO_QIoUfaNai3X9CgM79yjQ7rDdLYDREPsp1WdxEOf-f97Ony4nF2nc_vrm5m03luCiaHvGJVq6lhpa5rRkXDORcMt6aRtWz5pqxqWerUpQXUBWlrxjABINgQIWRZ7GfH47nL4N9XEAf15lfBpSsV5RWRpCgqlqiTkVroDpR1rR-CNmk00FvjHbQ27U8FwVISInkS6CiY4GMM0KplsH36oiJYbaJXY_QqRa9-olckScUoxQS7BYS_t_xjfQNdLIc9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691813395</pqid></control><display><type>article</type><title>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Zhenhai ; Zeng, Shengda ; Gasiński, Leszek ; Kim, Yun-Ho</creator><creatorcontrib>Liu, Zhenhai ; Zeng, Shengda ; Gasiński, Leszek ; Kim, Yun-Ho</creatorcontrib><description>In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-022-00977-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximation ; Boundary conditions ; Convection ; Convex and Discrete Geometry ; Differential equations ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Existence theorems ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>The Journal of Geometric Analysis, 2022-09, Vol.32 (9), Article 241</ispartof><rights>Mathematica Josephina, Inc. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Mathematica Josephina, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</citedby><cites>FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</cites><orcidid>0000-0003-1818-842X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-022-00977-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-022-00977-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Zeng, Shengda</creatorcontrib><creatorcontrib>Gasiński, Leszek</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><title>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Convection</subject><subject>Convex and Discrete Geometry</subject><subject>Differential equations</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Existence theorems</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxCAUhhujiePlBVyRuK4CLZcux_GaTNRETdwhpacjpoUROuq8vYw1cWdYwOF8H5c_y44IPiEYi9NIKKU4x5TmGFdC5GQrmxDGqlTS5-20xgznvKJ8N9uL8Q3jkhelmGQvt9513ugOnftV3QG6f9UR0Mz3yw56cIMOdlijh3UcoI_o0w6vqek-wAzWO_QIoUfaNai3X9CgM79yjQ7rDdLYDREPsp1WdxEOf-f97Ony4nF2nc_vrm5m03luCiaHvGJVq6lhpa5rRkXDORcMt6aRtWz5pqxqWerUpQXUBWlrxjABINgQIWRZ7GfH47nL4N9XEAf15lfBpSsV5RWRpCgqlqiTkVroDpR1rR-CNmk00FvjHbQ27U8FwVISInkS6CiY4GMM0KplsH36oiJYbaJXY_QqRa9-olckScUoxQS7BYS_t_xjfQNdLIc9</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Zhenhai</creator><creator>Zeng, Shengda</creator><creator>Gasiński, Leszek</creator><creator>Kim, Yun-Ho</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0003-1818-842X</orcidid></search><sort><creationdate>20220901</creationdate><title>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</title><author>Liu, Zhenhai ; Zeng, Shengda ; Gasiński, Leszek ; Kim, Yun-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-959fa2c54abb527d666750fcd8b8f6d6669b84aabb23eb31fb5501ee10c177843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Convection</topic><topic>Convex and Discrete Geometry</topic><topic>Differential equations</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Existence theorems</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Zeng, Shengda</creatorcontrib><creatorcontrib>Gasiński, Leszek</creatorcontrib><creatorcontrib>Kim, Yun-Ho</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhenhai</au><au>Zeng, Shengda</au><au>Gasiński, Leszek</au><au>Kim, Yun-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>9</issue><artnum>241</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In the present paper, we are concerned with the study of a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and boundary, respectively. First, we formulate NCP to a nonlinear bilateral obstacle variational problem with feedback effect. Then, a regularized approximation problem corresponding to NCP is introduced via applying the Moreau–Yosida approximating method. By employing a surjectivity theorem to multivalued pseudomonotone operators and a limiting procedure for solutions of approximating problems, we obtain the properties of solution set to NCP, including the nonemptiness and compactness. Finally, under further assumptions, we examine several extended versions of existence theorem to NCP.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-022-00977-1</doi><orcidid>https://orcid.org/0000-0003-1818-842X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2022-09, Vol.32 (9), Article 241 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2691813395 |
source | Springer Nature - Complete Springer Journals |
subjects | Abstract Harmonic Analysis Approximation Boundary conditions Convection Convex and Discrete Geometry Differential equations Differential Geometry Dynamical Systems and Ergodic Theory Existence theorems Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics Operators (mathematics) |
title | Nonlocal Double Phase Complementarity Systems with Convection Term and mixed Boundary Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20Double%20Phase%20Complementarity%20Systems%20with%20Convection%20Term%20and%20mixed%20Boundary%20Conditions&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Liu,%20Zhenhai&rft.date=2022-09-01&rft.volume=32&rft.issue=9&rft.artnum=241&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-022-00977-1&rft_dat=%3Cgale_proqu%3EA710881186%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691813395&rft_id=info:pmid/&rft_galeid=A710881186&rfr_iscdi=true |