Design of Machine Learning Based Smart Irrigation System for Precision Agriculture
Agriculture 4.0, as the future of farming technology, comprises numerous key enabling technologies towards sustainable agriculture. The use of state-of-the-art technologies, such as the Internet of Things, transform traditional cultivation practices, like irrigation, to modern solutions of precision...
Gespeichert in:
Veröffentlicht in: | Computers, materials & continua materials & continua, 2022, Vol.72 (1), p.109-124 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Computers, materials & continua |
container_volume | 72 |
creator | Ibrahim Mohammad Abuzanouneh, Khalil N. Al-Wesabi, Fahd Abdulrahman Albraikan, Amani Al Duhayyim, Mesfer Al-Shabi, M. Mustafa Hilal, Anwer Ahmed Hamza, Manar Sarwar Zamani, Abu Muthulakshmi, K. |
description | Agriculture 4.0, as the future of farming technology, comprises numerous key enabling technologies towards sustainable agriculture. The use of state-of-the-art technologies, such as the Internet of Things, transform traditional cultivation practices, like irrigation, to modern solutions of precision agriculture. To achieve effective water resource usage and automated irrigation in precision agriculture, recent technologies like machine learning (ML) can be employed. With this motivation, this paper design an IoT and ML enabled smart irrigation system (IoTML-SIS) for precision agriculture. The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation. The proposed IoTML-SIS model involves different IoT based sensors for soil moisture, humidity, temperature sensor, and light. Besides, the sensed data are transmitted to the cloud server for processing and decision making. Moreover, artificial algae algorithm (AAA) with least squares-support vector machine (LS-SVM) model is employed for the classification process to determine the need for irrigation. Furthermore, the AAA is applied to optimally tune the parameters involved in the LS-SVM model, and thereby the classification efficiency is significantly increased. The performance validation of the proposed IoTML-SIS technique ensured better performance over the compared methods with the maximum accuracy of 0.975. |
doi_str_mv | 10.32604/cmc.2022.022648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691782715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691782715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-91a91a53a479a874847fa13e6a15fc5a00bac729b072e9e612ffaffd41f25ec53</originalsourceid><addsrcrecordid>eNpNkElPwzAQhS0EEqVw52iJc4q32MmxlK1SEYjC2Zq64-CqTYqdHPrvSSgHpBnNoqc3mo-Qa84mUmimbt3OTQQTYtKnVsUJGfFc6Uz00-m__pxcpLRhTGpZshF5v8cUqpo2nr6A-wo10gVCrENd0TtIuKbLHcSWzmMMFbShqenykFrcUd9E-hbRhTQsp1UMrtu2XcRLcuZhm_Dqr47J5-PDx-w5W7w-zWfTReYkl21Wcugjl6BMCYVRhTIeuEQNPPcuB8ZW4IwoV8wILFFz4T14v1bcixxdLsfk5ui7j813h6m1m6aLdX_SCl1yUwjDBxU7qlxsUoro7T6G_qWD5cz-krM9OTuQs0dy8gd4BGF1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691782715</pqid></control><display><type>article</type><title>Design of Machine Learning Based Smart Irrigation System for Precision Agriculture</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ibrahim Mohammad Abuzanouneh, Khalil ; N. Al-Wesabi, Fahd ; Abdulrahman Albraikan, Amani ; Al Duhayyim, Mesfer ; Al-Shabi, M. ; Mustafa Hilal, Anwer ; Ahmed Hamza, Manar ; Sarwar Zamani, Abu ; Muthulakshmi, K.</creator><creatorcontrib>Ibrahim Mohammad Abuzanouneh, Khalil ; N. Al-Wesabi, Fahd ; Abdulrahman Albraikan, Amani ; Al Duhayyim, Mesfer ; Al-Shabi, M. ; Mustafa Hilal, Anwer ; Ahmed Hamza, Manar ; Sarwar Zamani, Abu ; Muthulakshmi, K.</creatorcontrib><description>Agriculture 4.0, as the future of farming technology, comprises numerous key enabling technologies towards sustainable agriculture. The use of state-of-the-art technologies, such as the Internet of Things, transform traditional cultivation practices, like irrigation, to modern solutions of precision agriculture. To achieve effective water resource usage and automated irrigation in precision agriculture, recent technologies like machine learning (ML) can be employed. With this motivation, this paper design an IoT and ML enabled smart irrigation system (IoTML-SIS) for precision agriculture. The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation. The proposed IoTML-SIS model involves different IoT based sensors for soil moisture, humidity, temperature sensor, and light. Besides, the sensed data are transmitted to the cloud server for processing and decision making. Moreover, artificial algae algorithm (AAA) with least squares-support vector machine (LS-SVM) model is employed for the classification process to determine the need for irrigation. Furthermore, the AAA is applied to optimally tune the parameters involved in the LS-SVM model, and thereby the classification efficiency is significantly increased. The performance validation of the proposed IoTML-SIS technique ensured better performance over the compared methods with the maximum accuracy of 0.975.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2022.022648</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Agriculture ; Algorithms ; Classification ; Decision making ; Internet of Things ; Irrigation ; Irrigation systems ; Machine learning ; Mathematical models ; Moisture effects ; Parameters ; Soil moisture ; Support vector machines ; Temperature sensors ; Water resources</subject><ispartof>Computers, materials & continua, 2022, Vol.72 (1), p.109-124</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-91a91a53a479a874847fa13e6a15fc5a00bac729b072e9e612ffaffd41f25ec53</citedby><cites>FETCH-LOGICAL-c313t-91a91a53a479a874847fa13e6a15fc5a00bac729b072e9e612ffaffd41f25ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4011,27905,27906,27907</link.rule.ids></links><search><creatorcontrib>Ibrahim Mohammad Abuzanouneh, Khalil</creatorcontrib><creatorcontrib>N. Al-Wesabi, Fahd</creatorcontrib><creatorcontrib>Abdulrahman Albraikan, Amani</creatorcontrib><creatorcontrib>Al Duhayyim, Mesfer</creatorcontrib><creatorcontrib>Al-Shabi, M.</creatorcontrib><creatorcontrib>Mustafa Hilal, Anwer</creatorcontrib><creatorcontrib>Ahmed Hamza, Manar</creatorcontrib><creatorcontrib>Sarwar Zamani, Abu</creatorcontrib><creatorcontrib>Muthulakshmi, K.</creatorcontrib><title>Design of Machine Learning Based Smart Irrigation System for Precision Agriculture</title><title>Computers, materials & continua</title><description>Agriculture 4.0, as the future of farming technology, comprises numerous key enabling technologies towards sustainable agriculture. The use of state-of-the-art technologies, such as the Internet of Things, transform traditional cultivation practices, like irrigation, to modern solutions of precision agriculture. To achieve effective water resource usage and automated irrigation in precision agriculture, recent technologies like machine learning (ML) can be employed. With this motivation, this paper design an IoT and ML enabled smart irrigation system (IoTML-SIS) for precision agriculture. The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation. The proposed IoTML-SIS model involves different IoT based sensors for soil moisture, humidity, temperature sensor, and light. Besides, the sensed data are transmitted to the cloud server for processing and decision making. Moreover, artificial algae algorithm (AAA) with least squares-support vector machine (LS-SVM) model is employed for the classification process to determine the need for irrigation. Furthermore, the AAA is applied to optimally tune the parameters involved in the LS-SVM model, and thereby the classification efficiency is significantly increased. The performance validation of the proposed IoTML-SIS technique ensured better performance over the compared methods with the maximum accuracy of 0.975.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Decision making</subject><subject>Internet of Things</subject><subject>Irrigation</subject><subject>Irrigation systems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Moisture effects</subject><subject>Parameters</subject><subject>Soil moisture</subject><subject>Support vector machines</subject><subject>Temperature sensors</subject><subject>Water resources</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkElPwzAQhS0EEqVw52iJc4q32MmxlK1SEYjC2Zq64-CqTYqdHPrvSSgHpBnNoqc3mo-Qa84mUmimbt3OTQQTYtKnVsUJGfFc6Uz00-m__pxcpLRhTGpZshF5v8cUqpo2nr6A-wo10gVCrENd0TtIuKbLHcSWzmMMFbShqenykFrcUd9E-hbRhTQsp1UMrtu2XcRLcuZhm_Dqr47J5-PDx-w5W7w-zWfTReYkl21Wcugjl6BMCYVRhTIeuEQNPPcuB8ZW4IwoV8wILFFz4T14v1bcixxdLsfk5ui7j813h6m1m6aLdX_SCl1yUwjDBxU7qlxsUoro7T6G_qWD5cz-krM9OTuQs0dy8gd4BGF1</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ibrahim Mohammad Abuzanouneh, Khalil</creator><creator>N. Al-Wesabi, Fahd</creator><creator>Abdulrahman Albraikan, Amani</creator><creator>Al Duhayyim, Mesfer</creator><creator>Al-Shabi, M.</creator><creator>Mustafa Hilal, Anwer</creator><creator>Ahmed Hamza, Manar</creator><creator>Sarwar Zamani, Abu</creator><creator>Muthulakshmi, K.</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Design of Machine Learning Based Smart Irrigation System for Precision Agriculture</title><author>Ibrahim Mohammad Abuzanouneh, Khalil ; N. Al-Wesabi, Fahd ; Abdulrahman Albraikan, Amani ; Al Duhayyim, Mesfer ; Al-Shabi, M. ; Mustafa Hilal, Anwer ; Ahmed Hamza, Manar ; Sarwar Zamani, Abu ; Muthulakshmi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-91a91a53a479a874847fa13e6a15fc5a00bac729b072e9e612ffaffd41f25ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Decision making</topic><topic>Internet of Things</topic><topic>Irrigation</topic><topic>Irrigation systems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Moisture effects</topic><topic>Parameters</topic><topic>Soil moisture</topic><topic>Support vector machines</topic><topic>Temperature sensors</topic><topic>Water resources</topic><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim Mohammad Abuzanouneh, Khalil</creatorcontrib><creatorcontrib>N. Al-Wesabi, Fahd</creatorcontrib><creatorcontrib>Abdulrahman Albraikan, Amani</creatorcontrib><creatorcontrib>Al Duhayyim, Mesfer</creatorcontrib><creatorcontrib>Al-Shabi, M.</creatorcontrib><creatorcontrib>Mustafa Hilal, Anwer</creatorcontrib><creatorcontrib>Ahmed Hamza, Manar</creatorcontrib><creatorcontrib>Sarwar Zamani, Abu</creatorcontrib><creatorcontrib>Muthulakshmi, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials & continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrahim Mohammad Abuzanouneh, Khalil</au><au>N. Al-Wesabi, Fahd</au><au>Abdulrahman Albraikan, Amani</au><au>Al Duhayyim, Mesfer</au><au>Al-Shabi, M.</au><au>Mustafa Hilal, Anwer</au><au>Ahmed Hamza, Manar</au><au>Sarwar Zamani, Abu</au><au>Muthulakshmi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Machine Learning Based Smart Irrigation System for Precision Agriculture</atitle><jtitle>Computers, materials & continua</jtitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>1</issue><spage>109</spage><epage>124</epage><pages>109-124</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Agriculture 4.0, as the future of farming technology, comprises numerous key enabling technologies towards sustainable agriculture. The use of state-of-the-art technologies, such as the Internet of Things, transform traditional cultivation practices, like irrigation, to modern solutions of precision agriculture. To achieve effective water resource usage and automated irrigation in precision agriculture, recent technologies like machine learning (ML) can be employed. With this motivation, this paper design an IoT and ML enabled smart irrigation system (IoTML-SIS) for precision agriculture. The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation. The proposed IoTML-SIS model involves different IoT based sensors for soil moisture, humidity, temperature sensor, and light. Besides, the sensed data are transmitted to the cloud server for processing and decision making. Moreover, artificial algae algorithm (AAA) with least squares-support vector machine (LS-SVM) model is employed for the classification process to determine the need for irrigation. Furthermore, the AAA is applied to optimally tune the parameters involved in the LS-SVM model, and thereby the classification efficiency is significantly increased. The performance validation of the proposed IoTML-SIS technique ensured better performance over the compared methods with the maximum accuracy of 0.975.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2022.022648</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2226 |
ispartof | Computers, materials & continua, 2022, Vol.72 (1), p.109-124 |
issn | 1546-2226 1546-2218 1546-2226 |
language | eng |
recordid | cdi_proquest_journals_2691782715 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Agriculture Algorithms Classification Decision making Internet of Things Irrigation Irrigation systems Machine learning Mathematical models Moisture effects Parameters Soil moisture Support vector machines Temperature sensors Water resources |
title | Design of Machine Learning Based Smart Irrigation System for Precision Agriculture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Machine%20Learning%20Based%20Smart%20Irrigation%20System%20for%20Precision%20Agriculture&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Ibrahim%20Mohammad%20Abuzanouneh,%20Khalil&rft.date=2022&rft.volume=72&rft.issue=1&rft.spage=109&rft.epage=124&rft.pages=109-124&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2022.022648&rft_dat=%3Cproquest_cross%3E2691782715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691782715&rft_id=info:pmid/&rfr_iscdi=true |