Magnetic field induced alignment of macroradical epoxy for enhanced electrical properties

Improving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics. In this study, we investigate the electrical properties of a non-conjugated radical t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2022-07, Vol.18 (28), p.5194-523
Hauptverfasser: Al-Qatatsheh, Ahmed, Capricho, Jaworski C, Vongsvivut, Jitraporn (Pimm), Tobin, Mark J, Juodkazis, Saulius, Hameed, Nishar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics. In this study, we investigate the electrical properties of a non-conjugated radical thermoset in a rigid, three-dimensional (3D) motif cured under an external magnetic field. The outcomes of the four-angle analysis of the synchrotron IRM beamline provide for the first time quantitative insights into the molecular orientation at the atomic-scale level. These insights, in turn, were utilized to apply Quantum Computational modeling theories and Monte Carlo simulation to study the effect of the magnetic field-induced molecular alignment on tuning electrical charge transport characteristics. The results explored the impact of radical density on forming percolation networks, showing a robust protocol for designing polymers with high electrical/thermal conductivity. Improving the electrical performance of macroradical epoxy thermosets to surpass the semiconductor threshold requires a comprehensive understanding of the electrical charge transport mechanisms and characteristics.
ISSN:1744-683X
1744-6848
DOI:10.1039/d1sm01731d