Synthesis of dual‐stimuli‐responsive polyurethane shape memory nanocomposites incorporating isocyanate‐functionalized Fe3O4 nanoparticles

Thermally and magnetically stimulated shape memory polyurethane (PU) nanocomposites were synthesized for intravascular stent applications. For this end, Fe3O4 magnetic nanoparticles (MNPs) were modified with octadecyl isocyanate (OD) to increase their affinity with the PU matrix by formation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-09, Vol.139 (33), p.n/a
Hauptverfasser: Babaie, Amin, Rezaei, Mostafa, Razzaghi, Donya, Roghani‐Mamaqani, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Babaie, Amin
Rezaei, Mostafa
Razzaghi, Donya
Roghani‐Mamaqani, Hossein
description Thermally and magnetically stimulated shape memory polyurethane (PU) nanocomposites were synthesized for intravascular stent applications. For this end, Fe3O4 magnetic nanoparticles (MNPs) were modified with octadecyl isocyanate (OD) to increase their affinity with the PU matrix by formation of the covalent urea linkages. The results showed that the OD‐grafted MNPs were replaced instead of carbonyl groups of polycaprolactone (PCL) soft segments in hydrogen bond formation with the urethane linkages. This led to higher phase separation degrees among the soft and hard phases, thereby PCL chains could reveal higher crystallization potential. Mechanical studies showed that the nanocomposites had high mechanical strength, Young's modulus, and elongation at break, which improve their practical applications. The nanocomposites showed thermo‐responsive shape memory behavior with a high shape recovery and shape fixity ratios due to the presence of the crystallizable PCL segments. The nanocomposite containing 10 wt% of the OD‐grafted MNPs could recover its original shape (during 90s) in a relatively weak alternating magnetic field (350 kHz and 12.9 kA/m). These results indicated that the prepared nanocomposites could be used to normalize the narrowed blood vessels through the remotely and magnetically‐controllable restricted shape recovery process. Restricted shape recovery process in the presence of an alternating magnetic field.
doi_str_mv 10.1002/app.52790
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2691729290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691729290</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2230-f696f0c0e1a919cc6194a1a2699be6da6bc8b4feef0633d422dec5a88c337bf93</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEuWx4A8ssQ61ndSNl6jiJSG1ErCOps6EGiW2sR1QWPEH8I18CaFlNVeaO0ejQ8gZZxecMTEF7y9mYq7YHplwpuZZIUW5TybjjmelUrNDchTjC2Ocz5ickK-HwaYNRhOpa2jdQ_vz-R2T6frWjClg9M5G84bUu3boA6YNWKRxAx5ph50LA7VgnXadd9EkjNRY7YJ3AZKxz9REpwewkHDENb3VyTgLrfnAml5jviy25x5CMrrFeEIOGmgjnv7PY_J0ffW4uM3ulzd3i8v7zAuRs6yRSjZMM-SguNJaclUAByGVWqOsQa51uS4axIbJPK8LIWrUMyhLnefzdaPyY3K-4_rgXnuMqXpxfRgfi9UI4XOhhGJja7prvZsWh8oH00EYKs6qP9nVKLvayq4uV6ttyH8Bxcp8nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691729290</pqid></control><display><type>article</type><title>Synthesis of dual‐stimuli‐responsive polyurethane shape memory nanocomposites incorporating isocyanate‐functionalized Fe3O4 nanoparticles</title><source>Access via Wiley Online Library</source><creator>Babaie, Amin ; Rezaei, Mostafa ; Razzaghi, Donya ; Roghani‐Mamaqani, Hossein</creator><creatorcontrib>Babaie, Amin ; Rezaei, Mostafa ; Razzaghi, Donya ; Roghani‐Mamaqani, Hossein</creatorcontrib><description>Thermally and magnetically stimulated shape memory polyurethane (PU) nanocomposites were synthesized for intravascular stent applications. For this end, Fe3O4 magnetic nanoparticles (MNPs) were modified with octadecyl isocyanate (OD) to increase their affinity with the PU matrix by formation of the covalent urea linkages. The results showed that the OD‐grafted MNPs were replaced instead of carbonyl groups of polycaprolactone (PCL) soft segments in hydrogen bond formation with the urethane linkages. This led to higher phase separation degrees among the soft and hard phases, thereby PCL chains could reveal higher crystallization potential. Mechanical studies showed that the nanocomposites had high mechanical strength, Young's modulus, and elongation at break, which improve their practical applications. The nanocomposites showed thermo‐responsive shape memory behavior with a high shape recovery and shape fixity ratios due to the presence of the crystallizable PCL segments. The nanocomposite containing 10 wt% of the OD‐grafted MNPs could recover its original shape (during 90s) in a relatively weak alternating magnetic field (350 kHz and 12.9 kA/m). These results indicated that the prepared nanocomposites could be used to normalize the narrowed blood vessels through the remotely and magnetically‐controllable restricted shape recovery process. Restricted shape recovery process in the presence of an alternating magnetic field.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.52790</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>biodegradable ; biomaterials ; Blood vessels ; Carbonyl groups ; Carbonyls ; Crystallization ; elastomers ; Elongation ; Hydrogen bonds ; Iron oxides ; Isocyanates ; Linkages ; Materials science ; Modulus of elasticity ; Nanocomposites ; Nanoparticles ; Phase separation ; Polycaprolactone ; Polymers ; polyurethane ; Polyurethane resins ; Recovery ; Segments ; Shape memory ; thermoplastics</subject><ispartof>Journal of applied polymer science, 2022-09, Vol.139 (33), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3715-847X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.52790$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.52790$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Babaie, Amin</creatorcontrib><creatorcontrib>Rezaei, Mostafa</creatorcontrib><creatorcontrib>Razzaghi, Donya</creatorcontrib><creatorcontrib>Roghani‐Mamaqani, Hossein</creatorcontrib><title>Synthesis of dual‐stimuli‐responsive polyurethane shape memory nanocomposites incorporating isocyanate‐functionalized Fe3O4 nanoparticles</title><title>Journal of applied polymer science</title><description>Thermally and magnetically stimulated shape memory polyurethane (PU) nanocomposites were synthesized for intravascular stent applications. For this end, Fe3O4 magnetic nanoparticles (MNPs) were modified with octadecyl isocyanate (OD) to increase their affinity with the PU matrix by formation of the covalent urea linkages. The results showed that the OD‐grafted MNPs were replaced instead of carbonyl groups of polycaprolactone (PCL) soft segments in hydrogen bond formation with the urethane linkages. This led to higher phase separation degrees among the soft and hard phases, thereby PCL chains could reveal higher crystallization potential. Mechanical studies showed that the nanocomposites had high mechanical strength, Young's modulus, and elongation at break, which improve their practical applications. The nanocomposites showed thermo‐responsive shape memory behavior with a high shape recovery and shape fixity ratios due to the presence of the crystallizable PCL segments. The nanocomposite containing 10 wt% of the OD‐grafted MNPs could recover its original shape (during 90s) in a relatively weak alternating magnetic field (350 kHz and 12.9 kA/m). These results indicated that the prepared nanocomposites could be used to normalize the narrowed blood vessels through the remotely and magnetically‐controllable restricted shape recovery process. Restricted shape recovery process in the presence of an alternating magnetic field.</description><subject>biodegradable</subject><subject>biomaterials</subject><subject>Blood vessels</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Crystallization</subject><subject>elastomers</subject><subject>Elongation</subject><subject>Hydrogen bonds</subject><subject>Iron oxides</subject><subject>Isocyanates</subject><subject>Linkages</subject><subject>Materials science</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Phase separation</subject><subject>Polycaprolactone</subject><subject>Polymers</subject><subject>polyurethane</subject><subject>Polyurethane resins</subject><subject>Recovery</subject><subject>Segments</subject><subject>Shape memory</subject><subject>thermoplastics</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEuWx4A8ssQ61ndSNl6jiJSG1ErCOps6EGiW2sR1QWPEH8I18CaFlNVeaO0ejQ8gZZxecMTEF7y9mYq7YHplwpuZZIUW5TybjjmelUrNDchTjC2Ocz5ickK-HwaYNRhOpa2jdQ_vz-R2T6frWjClg9M5G84bUu3boA6YNWKRxAx5ph50LA7VgnXadd9EkjNRY7YJ3AZKxz9REpwewkHDENb3VyTgLrfnAml5jviy25x5CMrrFeEIOGmgjnv7PY_J0ffW4uM3ulzd3i8v7zAuRs6yRSjZMM-SguNJaclUAByGVWqOsQa51uS4axIbJPK8LIWrUMyhLnefzdaPyY3K-4_rgXnuMqXpxfRgfi9UI4XOhhGJja7prvZsWh8oH00EYKs6qP9nVKLvayq4uV6ttyH8Bxcp8nQ</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Babaie, Amin</creator><creator>Rezaei, Mostafa</creator><creator>Razzaghi, Donya</creator><creator>Roghani‐Mamaqani, Hossein</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3715-847X</orcidid></search><sort><creationdate>20220905</creationdate><title>Synthesis of dual‐stimuli‐responsive polyurethane shape memory nanocomposites incorporating isocyanate‐functionalized Fe3O4 nanoparticles</title><author>Babaie, Amin ; Rezaei, Mostafa ; Razzaghi, Donya ; Roghani‐Mamaqani, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2230-f696f0c0e1a919cc6194a1a2699be6da6bc8b4feef0633d422dec5a88c337bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biodegradable</topic><topic>biomaterials</topic><topic>Blood vessels</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Crystallization</topic><topic>elastomers</topic><topic>Elongation</topic><topic>Hydrogen bonds</topic><topic>Iron oxides</topic><topic>Isocyanates</topic><topic>Linkages</topic><topic>Materials science</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Phase separation</topic><topic>Polycaprolactone</topic><topic>Polymers</topic><topic>polyurethane</topic><topic>Polyurethane resins</topic><topic>Recovery</topic><topic>Segments</topic><topic>Shape memory</topic><topic>thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babaie, Amin</creatorcontrib><creatorcontrib>Rezaei, Mostafa</creatorcontrib><creatorcontrib>Razzaghi, Donya</creatorcontrib><creatorcontrib>Roghani‐Mamaqani, Hossein</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babaie, Amin</au><au>Rezaei, Mostafa</au><au>Razzaghi, Donya</au><au>Roghani‐Mamaqani, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of dual‐stimuli‐responsive polyurethane shape memory nanocomposites incorporating isocyanate‐functionalized Fe3O4 nanoparticles</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-09-05</date><risdate>2022</risdate><volume>139</volume><issue>33</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Thermally and magnetically stimulated shape memory polyurethane (PU) nanocomposites were synthesized for intravascular stent applications. For this end, Fe3O4 magnetic nanoparticles (MNPs) were modified with octadecyl isocyanate (OD) to increase their affinity with the PU matrix by formation of the covalent urea linkages. The results showed that the OD‐grafted MNPs were replaced instead of carbonyl groups of polycaprolactone (PCL) soft segments in hydrogen bond formation with the urethane linkages. This led to higher phase separation degrees among the soft and hard phases, thereby PCL chains could reveal higher crystallization potential. Mechanical studies showed that the nanocomposites had high mechanical strength, Young's modulus, and elongation at break, which improve their practical applications. The nanocomposites showed thermo‐responsive shape memory behavior with a high shape recovery and shape fixity ratios due to the presence of the crystallizable PCL segments. The nanocomposite containing 10 wt% of the OD‐grafted MNPs could recover its original shape (during 90s) in a relatively weak alternating magnetic field (350 kHz and 12.9 kA/m). These results indicated that the prepared nanocomposites could be used to normalize the narrowed blood vessels through the remotely and magnetically‐controllable restricted shape recovery process. Restricted shape recovery process in the presence of an alternating magnetic field.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.52790</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3715-847X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-09, Vol.139 (33), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2691729290
source Access via Wiley Online Library
subjects biodegradable
biomaterials
Blood vessels
Carbonyl groups
Carbonyls
Crystallization
elastomers
Elongation
Hydrogen bonds
Iron oxides
Isocyanates
Linkages
Materials science
Modulus of elasticity
Nanocomposites
Nanoparticles
Phase separation
Polycaprolactone
Polymers
polyurethane
Polyurethane resins
Recovery
Segments
Shape memory
thermoplastics
title Synthesis of dual‐stimuli‐responsive polyurethane shape memory nanocomposites incorporating isocyanate‐functionalized Fe3O4 nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20dual%E2%80%90stimuli%E2%80%90responsive%20polyurethane%20shape%20memory%20nanocomposites%20incorporating%20isocyanate%E2%80%90functionalized%20Fe3O4%20nanoparticles&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Babaie,%20Amin&rft.date=2022-09-05&rft.volume=139&rft.issue=33&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.52790&rft_dat=%3Cproquest_wiley%3E2691729290%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691729290&rft_id=info:pmid/&rfr_iscdi=true