Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy

Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heteroint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Mohammad Amin Zare Pour, Romanyuk, Oleksandr, Moritz, Dominik C, Paszuk, Agnieszka, Maheu, Clement, Shekarabi, Sahar, Hanke, Kai Daniel, Ostheimer, David, Mayer, Thomas, Hofmann, Jan P, Jaegermann, Wolfram, Hannappel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mohammad Amin Zare Pour
Romanyuk, Oleksandr
Moritz, Dominik C
Paszuk, Agnieszka
Maheu, Clement
Shekarabi, Sahar
Hanke, Kai Daniel
Ostheimer, David
Mayer, Thomas
Hofmann, Jan P
Jaegermann, Wolfram
Hannappel, Thomas
description Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heterointerface. Understanding of the atomic and electronic properties of the GaInP/AlInP heterointerface is crucial for the reduction of photocurrent losses in III-V multijunction devices. In our paper, we investigated chemical composition and electronic properties of n-GaInP/n-AlInP heterostructures by X-ray photoelectron spectroscopy (XPS). To mimic an in-situ interface experiment with in-situ stepwise deposition of the contact material, 1 nm - 50 nm thick n-AlInP(100) epitaxial layers were grown on n-GaInP(100) buffer layer on n-GaAs(100) substrates by metal organic vapor phase epitaxy. We observed (2x2)/c(4x2) low-energy electron diffraction patterns with characteristic diffuse streaks along the [01-1] direction due to P-P dimers on both AlInP(100) and GaInP(100) as-prepared surfaces. Atomic composition analysis confirmed P-rich termination on both surfaces. Angle-resolved XPS measurements revealed a surface core level shift of 0.9 eV in P 2p peaks and the absence of interface core level shifts. We assigned the surface chemical shift in the P2p spectrum to P-P bonds on a surface. We found an upward surface band bending on the (2x2)/c(4x2) surfaces most probably caused by localized mid-gap electronic states. Pinning of the Fermi level by localized electronic states remained in n-GaInP/n-AlInP heterostructures. A valence band offset of 0.2 eV was derived by XPS and band alignment diagram models for the n-n junctions were suggested.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2691617669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691617669</sourcerecordid><originalsourceid>FETCH-proquest_journals_26916176693</originalsourceid><addsrcrecordid>eNqNi7sKwjAUhoMgKNp3OOCiQzBNNeqo4m1zcHCT2J5qpSY1JxX69tbLA7j8389_abC2jKKQT0dStlhAdBNCSDWR43HUZs-FNgmgQXepIMn0xek7gU3B8I3emf3Q8Hlesx8KMQAqXapjJHifrujR2czU-g3Jl0mGCZwrOHKnKyiu1lvMMfbOGqDiYyi2RdVlzVTnhMGPHdZbrw7LLS-cfZRI_nSzpTN1dZJqFqpwotQs-m_1AuInTDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691617669</pqid></control><display><type>article</type><title>Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy</title><source>Free E- Journals</source><creator>Mohammad Amin Zare Pour ; Romanyuk, Oleksandr ; Moritz, Dominik C ; Paszuk, Agnieszka ; Maheu, Clement ; Shekarabi, Sahar ; Hanke, Kai Daniel ; Ostheimer, David ; Mayer, Thomas ; Hofmann, Jan P ; Jaegermann, Wolfram ; Hannappel, Thomas</creator><creatorcontrib>Mohammad Amin Zare Pour ; Romanyuk, Oleksandr ; Moritz, Dominik C ; Paszuk, Agnieszka ; Maheu, Clement ; Shekarabi, Sahar ; Hanke, Kai Daniel ; Ostheimer, David ; Mayer, Thomas ; Hofmann, Jan P ; Jaegermann, Wolfram ; Hannappel, Thomas</creatorcontrib><description>Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heterointerface. Understanding of the atomic and electronic properties of the GaInP/AlInP heterointerface is crucial for the reduction of photocurrent losses in III-V multijunction devices. In our paper, we investigated chemical composition and electronic properties of n-GaInP/n-AlInP heterostructures by X-ray photoelectron spectroscopy (XPS). To mimic an in-situ interface experiment with in-situ stepwise deposition of the contact material, 1 nm - 50 nm thick n-AlInP(100) epitaxial layers were grown on n-GaInP(100) buffer layer on n-GaAs(100) substrates by metal organic vapor phase epitaxy. We observed (2x2)/c(4x2) low-energy electron diffraction patterns with characteristic diffuse streaks along the [01-1] direction due to P-P dimers on both AlInP(100) and GaInP(100) as-prepared surfaces. Atomic composition analysis confirmed P-rich termination on both surfaces. Angle-resolved XPS measurements revealed a surface core level shift of 0.9 eV in P 2p peaks and the absence of interface core level shifts. We assigned the surface chemical shift in the P2p spectrum to P-P bonds on a surface. We found an upward surface band bending on the (2x2)/c(4x2) surfaces most probably caused by localized mid-gap electronic states. Pinning of the Fermi level by localized electronic states remained in n-GaInP/n-AlInP heterostructures. A valence band offset of 0.2 eV was derived by XPS and band alignment diagram models for the n-n junctions were suggested.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic properties ; Buffer layers ; Chemical composition ; Chemical equilibrium ; Diffraction patterns ; Electron states ; Electronic properties ; Electrons ; Epitaxial growth ; Epitaxial layers ; Gallium indium phosphide ; Heterostructures ; Lattice matching ; Low energy electron diffraction ; N-n junctions ; Photoelectric effect ; Photoelectrochemical devices ; Photoelectrons ; Selectivity ; Spectrum analysis ; Substrates ; Valence band ; Vapor phase epitaxy ; Vapor phases ; X ray photoelectron spectroscopy</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohammad Amin Zare Pour</creatorcontrib><creatorcontrib>Romanyuk, Oleksandr</creatorcontrib><creatorcontrib>Moritz, Dominik C</creatorcontrib><creatorcontrib>Paszuk, Agnieszka</creatorcontrib><creatorcontrib>Maheu, Clement</creatorcontrib><creatorcontrib>Shekarabi, Sahar</creatorcontrib><creatorcontrib>Hanke, Kai Daniel</creatorcontrib><creatorcontrib>Ostheimer, David</creatorcontrib><creatorcontrib>Mayer, Thomas</creatorcontrib><creatorcontrib>Hofmann, Jan P</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Hannappel, Thomas</creatorcontrib><title>Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy</title><title>arXiv.org</title><description>Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heterointerface. Understanding of the atomic and electronic properties of the GaInP/AlInP heterointerface is crucial for the reduction of photocurrent losses in III-V multijunction devices. In our paper, we investigated chemical composition and electronic properties of n-GaInP/n-AlInP heterostructures by X-ray photoelectron spectroscopy (XPS). To mimic an in-situ interface experiment with in-situ stepwise deposition of the contact material, 1 nm - 50 nm thick n-AlInP(100) epitaxial layers were grown on n-GaInP(100) buffer layer on n-GaAs(100) substrates by metal organic vapor phase epitaxy. We observed (2x2)/c(4x2) low-energy electron diffraction patterns with characteristic diffuse streaks along the [01-1] direction due to P-P dimers on both AlInP(100) and GaInP(100) as-prepared surfaces. Atomic composition analysis confirmed P-rich termination on both surfaces. Angle-resolved XPS measurements revealed a surface core level shift of 0.9 eV in P 2p peaks and the absence of interface core level shifts. We assigned the surface chemical shift in the P2p spectrum to P-P bonds on a surface. We found an upward surface band bending on the (2x2)/c(4x2) surfaces most probably caused by localized mid-gap electronic states. Pinning of the Fermi level by localized electronic states remained in n-GaInP/n-AlInP heterostructures. A valence band offset of 0.2 eV was derived by XPS and band alignment diagram models for the n-n junctions were suggested.</description><subject>Atomic properties</subject><subject>Buffer layers</subject><subject>Chemical composition</subject><subject>Chemical equilibrium</subject><subject>Diffraction patterns</subject><subject>Electron states</subject><subject>Electronic properties</subject><subject>Electrons</subject><subject>Epitaxial growth</subject><subject>Epitaxial layers</subject><subject>Gallium indium phosphide</subject><subject>Heterostructures</subject><subject>Lattice matching</subject><subject>Low energy electron diffraction</subject><subject>N-n junctions</subject><subject>Photoelectric effect</subject><subject>Photoelectrochemical devices</subject><subject>Photoelectrons</subject><subject>Selectivity</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Valence band</subject><subject>Vapor phase epitaxy</subject><subject>Vapor phases</subject><subject>X ray photoelectron spectroscopy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKwjAUhoMgKNp3OOCiQzBNNeqo4m1zcHCT2J5qpSY1JxX69tbLA7j8389_abC2jKKQT0dStlhAdBNCSDWR43HUZs-FNgmgQXepIMn0xek7gU3B8I3emf3Q8Hlesx8KMQAqXapjJHifrujR2czU-g3Jl0mGCZwrOHKnKyiu1lvMMfbOGqDiYyi2RdVlzVTnhMGPHdZbrw7LLS-cfZRI_nSzpTN1dZJqFqpwotQs-m_1AuInTDc</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Mohammad Amin Zare Pour</creator><creator>Romanyuk, Oleksandr</creator><creator>Moritz, Dominik C</creator><creator>Paszuk, Agnieszka</creator><creator>Maheu, Clement</creator><creator>Shekarabi, Sahar</creator><creator>Hanke, Kai Daniel</creator><creator>Ostheimer, David</creator><creator>Mayer, Thomas</creator><creator>Hofmann, Jan P</creator><creator>Jaegermann, Wolfram</creator><creator>Hannappel, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220718</creationdate><title>Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy</title><author>Mohammad Amin Zare Pour ; Romanyuk, Oleksandr ; Moritz, Dominik C ; Paszuk, Agnieszka ; Maheu, Clement ; Shekarabi, Sahar ; Hanke, Kai Daniel ; Ostheimer, David ; Mayer, Thomas ; Hofmann, Jan P ; Jaegermann, Wolfram ; Hannappel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26916176693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Buffer layers</topic><topic>Chemical composition</topic><topic>Chemical equilibrium</topic><topic>Diffraction patterns</topic><topic>Electron states</topic><topic>Electronic properties</topic><topic>Electrons</topic><topic>Epitaxial growth</topic><topic>Epitaxial layers</topic><topic>Gallium indium phosphide</topic><topic>Heterostructures</topic><topic>Lattice matching</topic><topic>Low energy electron diffraction</topic><topic>N-n junctions</topic><topic>Photoelectric effect</topic><topic>Photoelectrochemical devices</topic><topic>Photoelectrons</topic><topic>Selectivity</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Valence band</topic><topic>Vapor phase epitaxy</topic><topic>Vapor phases</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammad Amin Zare Pour</creatorcontrib><creatorcontrib>Romanyuk, Oleksandr</creatorcontrib><creatorcontrib>Moritz, Dominik C</creatorcontrib><creatorcontrib>Paszuk, Agnieszka</creatorcontrib><creatorcontrib>Maheu, Clement</creatorcontrib><creatorcontrib>Shekarabi, Sahar</creatorcontrib><creatorcontrib>Hanke, Kai Daniel</creatorcontrib><creatorcontrib>Ostheimer, David</creatorcontrib><creatorcontrib>Mayer, Thomas</creatorcontrib><creatorcontrib>Hofmann, Jan P</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Hannappel, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad Amin Zare Pour</au><au>Romanyuk, Oleksandr</au><au>Moritz, Dominik C</au><au>Paszuk, Agnieszka</au><au>Maheu, Clement</au><au>Shekarabi, Sahar</au><au>Hanke, Kai Daniel</au><au>Ostheimer, David</au><au>Mayer, Thomas</au><au>Hofmann, Jan P</au><au>Jaegermann, Wolfram</au><au>Hannappel, Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy</atitle><jtitle>arXiv.org</jtitle><date>2022-07-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heterointerface. Understanding of the atomic and electronic properties of the GaInP/AlInP heterointerface is crucial for the reduction of photocurrent losses in III-V multijunction devices. In our paper, we investigated chemical composition and electronic properties of n-GaInP/n-AlInP heterostructures by X-ray photoelectron spectroscopy (XPS). To mimic an in-situ interface experiment with in-situ stepwise deposition of the contact material, 1 nm - 50 nm thick n-AlInP(100) epitaxial layers were grown on n-GaInP(100) buffer layer on n-GaAs(100) substrates by metal organic vapor phase epitaxy. We observed (2x2)/c(4x2) low-energy electron diffraction patterns with characteristic diffuse streaks along the [01-1] direction due to P-P dimers on both AlInP(100) and GaInP(100) as-prepared surfaces. Atomic composition analysis confirmed P-rich termination on both surfaces. Angle-resolved XPS measurements revealed a surface core level shift of 0.9 eV in P 2p peaks and the absence of interface core level shifts. We assigned the surface chemical shift in the P2p spectrum to P-P bonds on a surface. We found an upward surface band bending on the (2x2)/c(4x2) surfaces most probably caused by localized mid-gap electronic states. Pinning of the Fermi level by localized electronic states remained in n-GaInP/n-AlInP heterostructures. A valence band offset of 0.2 eV was derived by XPS and band alignment diagram models for the n-n junctions were suggested.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2691617669
source Free E- Journals
subjects Atomic properties
Buffer layers
Chemical composition
Chemical equilibrium
Diffraction patterns
Electron states
Electronic properties
Electrons
Epitaxial growth
Epitaxial layers
Gallium indium phosphide
Heterostructures
Lattice matching
Low energy electron diffraction
N-n junctions
Photoelectric effect
Photoelectrochemical devices
Photoelectrons
Selectivity
Spectrum analysis
Substrates
Valence band
Vapor phase epitaxy
Vapor phases
X ray photoelectron spectroscopy
title Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Band%20energy%20diagrams%20of%20n-GaInP/n-AlInP(100)%20surfaces%20and%20heterointerfaces%20studied%20by%20X-ray%20photoelectron%20spectroscopy&rft.jtitle=arXiv.org&rft.au=Mohammad%20Amin%20Zare%20Pour&rft.date=2022-07-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2691617669%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691617669&rft_id=info:pmid/&rfr_iscdi=true