Estimating Continuous Treatment Effects in Panel Data using Machine Learning with a Climate Application

This paper introduces and proves asymptotic normality for a new semi-parametric estimator of continuous treatment effects in panel data. Specifically, we estimate the average derivative. Our estimator uses the panel structure of data to account for unobservable time-invariant heterogeneity and machi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Klosin, Sylvia, Vilgalys, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Klosin, Sylvia
Vilgalys, Max
description This paper introduces and proves asymptotic normality for a new semi-parametric estimator of continuous treatment effects in panel data. Specifically, we estimate the average derivative. Our estimator uses the panel structure of data to account for unobservable time-invariant heterogeneity and machine learning (ML) methods to preserve statistical power while modeling high-dimensional relationships. We construct our estimator using tools from double de-biased machine learning (DML) literature. Monte Carlo simulations in a nonlinear panel setting show that our method estimates the average derivative with low bias and variance relative to other approaches. Lastly, we use our estimator to measure the impact of extreme heat on United States (U.S.) corn production, after flexibly controlling for precipitation and other weather features. Our approach yields extreme heat effect estimates that are 50% larger than estimates using linear regression. This difference in estimates corresponds to an additional $3.17 billion in annual damages by 2050 under median climate scenarios. We also estimate a dose-response curve, which shows that damages from extreme heat decline somewhat in counties with more extreme heat exposure.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2691615610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691615610</sourcerecordid><originalsourceid>FETCH-proquest_journals_26916156103</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3uNBa0DGtlmFGi4IW7uUiVx3RO-bM0Oun0AO0OvD9nJXwZBxHwekg5Ub4xnRhGMr0KJMk9kSTG6sGtIobyDTPdNoZKCZCOxBbyOuaKmtAMbyQqYcrWgRnlsMTq1YxwYNw4iX4KNsCQtYvSoLLOPaqmuWad2JdY2_I_3Er9re8yO7BOOm3I2PLTruJ56qU6TlKoySNwvi_1Rf1fUcy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691615610</pqid></control><display><type>article</type><title>Estimating Continuous Treatment Effects in Panel Data using Machine Learning with a Climate Application</title><source>Free E- Journals</source><creator>Klosin, Sylvia ; Vilgalys, Max</creator><creatorcontrib>Klosin, Sylvia ; Vilgalys, Max</creatorcontrib><description>This paper introduces and proves asymptotic normality for a new semi-parametric estimator of continuous treatment effects in panel data. Specifically, we estimate the average derivative. Our estimator uses the panel structure of data to account for unobservable time-invariant heterogeneity and machine learning (ML) methods to preserve statistical power while modeling high-dimensional relationships. We construct our estimator using tools from double de-biased machine learning (DML) literature. Monte Carlo simulations in a nonlinear panel setting show that our method estimates the average derivative with low bias and variance relative to other approaches. Lastly, we use our estimator to measure the impact of extreme heat on United States (U.S.) corn production, after flexibly controlling for precipitation and other weather features. Our approach yields extreme heat effect estimates that are 50% larger than estimates using linear regression. This difference in estimates corresponds to an additional $3.17 billion in annual damages by 2050 under median climate scenarios. We also estimate a dose-response curve, which shows that damages from extreme heat decline somewhat in counties with more extreme heat exposure.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crop yield ; Elasticity ; Estimates ; Heterogeneity ; Impact analysis ; Impact damage ; Machine learning ; Normality</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Klosin, Sylvia</creatorcontrib><creatorcontrib>Vilgalys, Max</creatorcontrib><title>Estimating Continuous Treatment Effects in Panel Data using Machine Learning with a Climate Application</title><title>arXiv.org</title><description>This paper introduces and proves asymptotic normality for a new semi-parametric estimator of continuous treatment effects in panel data. Specifically, we estimate the average derivative. Our estimator uses the panel structure of data to account for unobservable time-invariant heterogeneity and machine learning (ML) methods to preserve statistical power while modeling high-dimensional relationships. We construct our estimator using tools from double de-biased machine learning (DML) literature. Monte Carlo simulations in a nonlinear panel setting show that our method estimates the average derivative with low bias and variance relative to other approaches. Lastly, we use our estimator to measure the impact of extreme heat on United States (U.S.) corn production, after flexibly controlling for precipitation and other weather features. Our approach yields extreme heat effect estimates that are 50% larger than estimates using linear regression. This difference in estimates corresponds to an additional $3.17 billion in annual damages by 2050 under median climate scenarios. We also estimate a dose-response curve, which shows that damages from extreme heat decline somewhat in counties with more extreme heat exposure.</description><subject>Crop yield</subject><subject>Elasticity</subject><subject>Estimates</subject><subject>Heterogeneity</subject><subject>Impact analysis</subject><subject>Impact damage</subject><subject>Machine learning</subject><subject>Normality</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjM0KgkAURocgSMp3uNBa0DGtlmFGi4IW7uUiVx3RO-bM0Oun0AO0OvD9nJXwZBxHwekg5Ub4xnRhGMr0KJMk9kSTG6sGtIobyDTPdNoZKCZCOxBbyOuaKmtAMbyQqYcrWgRnlsMTq1YxwYNw4iX4KNsCQtYvSoLLOPaqmuWad2JdY2_I_3Er9re8yO7BOOm3I2PLTruJ56qU6TlKoySNwvi_1Rf1fUcy</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Klosin, Sylvia</creator><creator>Vilgalys, Max</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230913</creationdate><title>Estimating Continuous Treatment Effects in Panel Data using Machine Learning with a Climate Application</title><author>Klosin, Sylvia ; Vilgalys, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26916156103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crop yield</topic><topic>Elasticity</topic><topic>Estimates</topic><topic>Heterogeneity</topic><topic>Impact analysis</topic><topic>Impact damage</topic><topic>Machine learning</topic><topic>Normality</topic><toplevel>online_resources</toplevel><creatorcontrib>Klosin, Sylvia</creatorcontrib><creatorcontrib>Vilgalys, Max</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klosin, Sylvia</au><au>Vilgalys, Max</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Estimating Continuous Treatment Effects in Panel Data using Machine Learning with a Climate Application</atitle><jtitle>arXiv.org</jtitle><date>2023-09-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper introduces and proves asymptotic normality for a new semi-parametric estimator of continuous treatment effects in panel data. Specifically, we estimate the average derivative. Our estimator uses the panel structure of data to account for unobservable time-invariant heterogeneity and machine learning (ML) methods to preserve statistical power while modeling high-dimensional relationships. We construct our estimator using tools from double de-biased machine learning (DML) literature. Monte Carlo simulations in a nonlinear panel setting show that our method estimates the average derivative with low bias and variance relative to other approaches. Lastly, we use our estimator to measure the impact of extreme heat on United States (U.S.) corn production, after flexibly controlling for precipitation and other weather features. Our approach yields extreme heat effect estimates that are 50% larger than estimates using linear regression. This difference in estimates corresponds to an additional $3.17 billion in annual damages by 2050 under median climate scenarios. We also estimate a dose-response curve, which shows that damages from extreme heat decline somewhat in counties with more extreme heat exposure.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2691615610
source Free E- Journals
subjects Crop yield
Elasticity
Estimates
Heterogeneity
Impact analysis
Impact damage
Machine learning
Normality
title Estimating Continuous Treatment Effects in Panel Data using Machine Learning with a Climate Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Estimating%20Continuous%20Treatment%20Effects%20in%20Panel%20Data%20using%20Machine%20Learning%20with%20a%20Climate%20Application&rft.jtitle=arXiv.org&rft.au=Klosin,%20Sylvia&rft.date=2023-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2691615610%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691615610&rft_id=info:pmid/&rfr_iscdi=true