In situ imaging the dynamics of sodium metal deposition and stripping
Sodium (Na) metal batteries (SMBs) are potential “beyond lithium (Li)” energy storage technology. However, uncontrollable Na dendrite growth hinders the practical application of SMBs. The dynamics for Na dendrite plating/stripping are still unclear, which affects the development of a uniform Na depo...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-07, Vol.10 (28), p.14875-14883 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14883 |
---|---|
container_issue | 28 |
container_start_page | 14875 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Geng, Lin Zhao, Chao Yan, Jitong Fu, Chengrui Zhang, Xuedong Yao, Jingming Sun, Haiming Su, Yong Liu, Qiunan Zhang, Liqiang Tang, Yongfu Ding, Feng Huang, Jianyu |
description | Sodium (Na) metal batteries (SMBs) are potential “beyond lithium (Li)” energy storage technology. However, uncontrollable Na dendrite growth hinders the practical application of SMBs. The dynamics for Na dendrite plating/stripping are still unclear, which affects the development of a uniform Na deposition and stripping strategy. Herein,
in situ
imaging of the dynamics of Na deposition and stripping was conducted using a nano-electrochemical device in an advanced aberration corrected environmental transmission electron microscope (ETEM). Dodecahedron shaped Na nanocrystals with {110} exposed surfaces were formed during plating. During stripping, Na atoms were extracted layer-by-layer (LBL) along the {110} planes, which switched to the {112} planes once the extraction encountered the corner of the dodecahedra. Density functional theory (DFT) calculations indicate that the crystallography of Na deposition and stripping was controlled by a minimum energy path or Wulff's law, which requires high mass flux to distribute the newly deposited Na.
In situ
imaging of Na metal deposition and stripping provides new understanding of the Na dendrite dynamics, which may have important implications to develop strategies to suppress Na dendrite growth. |
doi_str_mv | 10.1039/D2TA02513B |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691507300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691507300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-60cf9d8115bb6ab423fd51dbff6f30e3a721dc78d5de6283fb019298bb08c8c3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWGovfoKAN2F1kjTZ5Fhr1ULBS-9L_taU7mZNdg_99q4oOpc3h9-b4T2Ebgk8EGDq8ZnuV0A5YU8XaEaBQ1Uvlbj826W8RotSjjCNBBBKzdBm2-EShxHHVh9id8DDh8fu3Ok22oJTwCW5OLa49YM-Yef7NNExdVh3Dpchx76fXDfoKuhT8YtfnaP9y2a_fqt276_b9WpXWcrVUAmwQTlJCDdGaLOkLDhOnAlBBAae6ZoSZ2vpuPOCShYMEEWVNAaklZbN0d3P2T6nz9GXoTmmMXfTx4YKRTjUDGCi7n8om1Mp2Yemz1O6fG4INN9FNf9FsS_dIFpa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691507300</pqid></control><display><type>article</type><title>In situ imaging the dynamics of sodium metal deposition and stripping</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Geng, Lin ; Zhao, Chao ; Yan, Jitong ; Fu, Chengrui ; Zhang, Xuedong ; Yao, Jingming ; Sun, Haiming ; Su, Yong ; Liu, Qiunan ; Zhang, Liqiang ; Tang, Yongfu ; Ding, Feng ; Huang, Jianyu</creator><creatorcontrib>Geng, Lin ; Zhao, Chao ; Yan, Jitong ; Fu, Chengrui ; Zhang, Xuedong ; Yao, Jingming ; Sun, Haiming ; Su, Yong ; Liu, Qiunan ; Zhang, Liqiang ; Tang, Yongfu ; Ding, Feng ; Huang, Jianyu</creatorcontrib><description>Sodium (Na) metal batteries (SMBs) are potential “beyond lithium (Li)” energy storage technology. However, uncontrollable Na dendrite growth hinders the practical application of SMBs. The dynamics for Na dendrite plating/stripping are still unclear, which affects the development of a uniform Na deposition and stripping strategy. Herein,
in situ
imaging of the dynamics of Na deposition and stripping was conducted using a nano-electrochemical device in an advanced aberration corrected environmental transmission electron microscope (ETEM). Dodecahedron shaped Na nanocrystals with {110} exposed surfaces were formed during plating. During stripping, Na atoms were extracted layer-by-layer (LBL) along the {110} planes, which switched to the {112} planes once the extraction encountered the corner of the dodecahedra. Density functional theory (DFT) calculations indicate that the crystallography of Na deposition and stripping was controlled by a minimum energy path or Wulff's law, which requires high mass flux to distribute the newly deposited Na.
In situ
imaging of Na metal deposition and stripping provides new understanding of the Na dendrite dynamics, which may have important implications to develop strategies to suppress Na dendrite growth.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D2TA02513B</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Crystallography ; Dendritic structure ; Density functional theory ; Deposition ; Dynamics ; Electrochemistry ; Energy storage ; Imaging ; Lithium ; Nanocrystals ; Plating ; Pollutant deposition ; Sodium ; Storage batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-07, Vol.10 (28), p.14875-14883</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-60cf9d8115bb6ab423fd51dbff6f30e3a721dc78d5de6283fb019298bb08c8c3</citedby><cites>FETCH-LOGICAL-c259t-60cf9d8115bb6ab423fd51dbff6f30e3a721dc78d5de6283fb019298bb08c8c3</cites><orcidid>0000-0002-6318-3110 ; 0000-0001-9085-500X ; 0000-0002-8424-5368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Zhao, Chao</creatorcontrib><creatorcontrib>Yan, Jitong</creatorcontrib><creatorcontrib>Fu, Chengrui</creatorcontrib><creatorcontrib>Zhang, Xuedong</creatorcontrib><creatorcontrib>Yao, Jingming</creatorcontrib><creatorcontrib>Sun, Haiming</creatorcontrib><creatorcontrib>Su, Yong</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Tang, Yongfu</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><creatorcontrib>Huang, Jianyu</creatorcontrib><title>In situ imaging the dynamics of sodium metal deposition and stripping</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Sodium (Na) metal batteries (SMBs) are potential “beyond lithium (Li)” energy storage technology. However, uncontrollable Na dendrite growth hinders the practical application of SMBs. The dynamics for Na dendrite plating/stripping are still unclear, which affects the development of a uniform Na deposition and stripping strategy. Herein,
in situ
imaging of the dynamics of Na deposition and stripping was conducted using a nano-electrochemical device in an advanced aberration corrected environmental transmission electron microscope (ETEM). Dodecahedron shaped Na nanocrystals with {110} exposed surfaces were formed during plating. During stripping, Na atoms were extracted layer-by-layer (LBL) along the {110} planes, which switched to the {112} planes once the extraction encountered the corner of the dodecahedra. Density functional theory (DFT) calculations indicate that the crystallography of Na deposition and stripping was controlled by a minimum energy path or Wulff's law, which requires high mass flux to distribute the newly deposited Na.
In situ
imaging of Na metal deposition and stripping provides new understanding of the Na dendrite dynamics, which may have important implications to develop strategies to suppress Na dendrite growth.</description><subject>Batteries</subject><subject>Crystallography</subject><subject>Dendritic structure</subject><subject>Density functional theory</subject><subject>Deposition</subject><subject>Dynamics</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Imaging</subject><subject>Lithium</subject><subject>Nanocrystals</subject><subject>Plating</subject><subject>Pollutant deposition</subject><subject>Sodium</subject><subject>Storage batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWGovfoKAN2F1kjTZ5Fhr1ULBS-9L_taU7mZNdg_99q4oOpc3h9-b4T2Ebgk8EGDq8ZnuV0A5YU8XaEaBQ1Uvlbj826W8RotSjjCNBBBKzdBm2-EShxHHVh9id8DDh8fu3Ok22oJTwCW5OLa49YM-Yef7NNExdVh3Dpchx76fXDfoKuhT8YtfnaP9y2a_fqt276_b9WpXWcrVUAmwQTlJCDdGaLOkLDhOnAlBBAae6ZoSZ2vpuPOCShYMEEWVNAaklZbN0d3P2T6nz9GXoTmmMXfTx4YKRTjUDGCi7n8om1Mp2Yemz1O6fG4INN9FNf9FsS_dIFpa</recordid><startdate>20220719</startdate><enddate>20220719</enddate><creator>Geng, Lin</creator><creator>Zhao, Chao</creator><creator>Yan, Jitong</creator><creator>Fu, Chengrui</creator><creator>Zhang, Xuedong</creator><creator>Yao, Jingming</creator><creator>Sun, Haiming</creator><creator>Su, Yong</creator><creator>Liu, Qiunan</creator><creator>Zhang, Liqiang</creator><creator>Tang, Yongfu</creator><creator>Ding, Feng</creator><creator>Huang, Jianyu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6318-3110</orcidid><orcidid>https://orcid.org/0000-0001-9085-500X</orcidid><orcidid>https://orcid.org/0000-0002-8424-5368</orcidid></search><sort><creationdate>20220719</creationdate><title>In situ imaging the dynamics of sodium metal deposition and stripping</title><author>Geng, Lin ; Zhao, Chao ; Yan, Jitong ; Fu, Chengrui ; Zhang, Xuedong ; Yao, Jingming ; Sun, Haiming ; Su, Yong ; Liu, Qiunan ; Zhang, Liqiang ; Tang, Yongfu ; Ding, Feng ; Huang, Jianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-60cf9d8115bb6ab423fd51dbff6f30e3a721dc78d5de6283fb019298bb08c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Crystallography</topic><topic>Dendritic structure</topic><topic>Density functional theory</topic><topic>Deposition</topic><topic>Dynamics</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Imaging</topic><topic>Lithium</topic><topic>Nanocrystals</topic><topic>Plating</topic><topic>Pollutant deposition</topic><topic>Sodium</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Zhao, Chao</creatorcontrib><creatorcontrib>Yan, Jitong</creatorcontrib><creatorcontrib>Fu, Chengrui</creatorcontrib><creatorcontrib>Zhang, Xuedong</creatorcontrib><creatorcontrib>Yao, Jingming</creatorcontrib><creatorcontrib>Sun, Haiming</creatorcontrib><creatorcontrib>Su, Yong</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Tang, Yongfu</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><creatorcontrib>Huang, Jianyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Lin</au><au>Zhao, Chao</au><au>Yan, Jitong</au><au>Fu, Chengrui</au><au>Zhang, Xuedong</au><au>Yao, Jingming</au><au>Sun, Haiming</au><au>Su, Yong</au><au>Liu, Qiunan</au><au>Zhang, Liqiang</au><au>Tang, Yongfu</au><au>Ding, Feng</au><au>Huang, Jianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ imaging the dynamics of sodium metal deposition and stripping</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-07-19</date><risdate>2022</risdate><volume>10</volume><issue>28</issue><spage>14875</spage><epage>14883</epage><pages>14875-14883</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Sodium (Na) metal batteries (SMBs) are potential “beyond lithium (Li)” energy storage technology. However, uncontrollable Na dendrite growth hinders the practical application of SMBs. The dynamics for Na dendrite plating/stripping are still unclear, which affects the development of a uniform Na deposition and stripping strategy. Herein,
in situ
imaging of the dynamics of Na deposition and stripping was conducted using a nano-electrochemical device in an advanced aberration corrected environmental transmission electron microscope (ETEM). Dodecahedron shaped Na nanocrystals with {110} exposed surfaces were formed during plating. During stripping, Na atoms were extracted layer-by-layer (LBL) along the {110} planes, which switched to the {112} planes once the extraction encountered the corner of the dodecahedra. Density functional theory (DFT) calculations indicate that the crystallography of Na deposition and stripping was controlled by a minimum energy path or Wulff's law, which requires high mass flux to distribute the newly deposited Na.
In situ
imaging of Na metal deposition and stripping provides new understanding of the Na dendrite dynamics, which may have important implications to develop strategies to suppress Na dendrite growth.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2TA02513B</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6318-3110</orcidid><orcidid>https://orcid.org/0000-0001-9085-500X</orcidid><orcidid>https://orcid.org/0000-0002-8424-5368</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-07, Vol.10 (28), p.14875-14883 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2691507300 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Batteries Crystallography Dendritic structure Density functional theory Deposition Dynamics Electrochemistry Energy storage Imaging Lithium Nanocrystals Plating Pollutant deposition Sodium Storage batteries |
title | In situ imaging the dynamics of sodium metal deposition and stripping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20imaging%20the%20dynamics%20of%20sodium%20metal%20deposition%20and%20stripping&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Geng,%20Lin&rft.date=2022-07-19&rft.volume=10&rft.issue=28&rft.spage=14875&rft.epage=14883&rft.pages=14875-14883&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D2TA02513B&rft_dat=%3Cproquest_cross%3E2691507300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691507300&rft_id=info:pmid/&rfr_iscdi=true |