Fairness and the set of optimal rankings for the linear ordering problem

The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2022-09, Vol.23 (3), p.1289-1317
Hauptverfasser: Anderson, Paul E., Chartier, Timothy P., Langville, Amy N., Pedings-Behling, Kathryn E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1317
container_issue 3
container_start_page 1289
container_title Optimization and engineering
container_volume 23
creator Anderson, Paul E.
Chartier, Timothy P.
Langville, Amy N.
Pedings-Behling, Kathryn E.
description The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings.
doi_str_mv 10.1007/s11081-021-09650-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691506233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691506233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eD1I4mPqKIUqRIXOFuOH5CSJsFOD_l73AaJG4fVrjQzO5pB6BboPVBaPiQAWgGhLI8qJCXTGVqALDlhionzfPNKESEYvURXKe0ohUKyaoE2a9PEzqeETefw-Olx8iPuA-6HsdmbFkfTfTXdR8Khjye8bTpvIu6j8zEDeIh93fr9NboIpk3-5ncv0fv66W21IdvX55fV45ZYDmokwtSOgYUKQFSFLZ20qqbMVqUJomYQSpqTqGCkYNypEoR0ouCSgePWW86X6G7-m32_Dz6NetcfYpctNSsUSFowfmSxmWVjn1L0QQ8xx4mTBqqPjem5MZ0b06fG9JRFfBal4ZjMx7_X_6h-AJKjbc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691506233</pqid></control><display><type>article</type><title>Fairness and the set of optimal rankings for the linear ordering problem</title><source>Springer Nature - Complete Springer Journals</source><creator>Anderson, Paul E. ; Chartier, Timothy P. ; Langville, Amy N. ; Pedings-Behling, Kathryn E.</creator><creatorcontrib>Anderson, Paul E. ; Chartier, Timothy P. ; Langville, Amy N. ; Pedings-Behling, Kathryn E.</creatorcontrib><description>The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-021-09650-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Centroids ; Control ; Engineering ; Environmental Management ; Financial Engineering ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Ranking ; Research Article ; Systems Theory</subject><ispartof>Optimization and engineering, 2022-09, Vol.23 (3), p.1289-1317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</citedby><cites>FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-021-09650-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-021-09650-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Anderson, Paul E.</creatorcontrib><creatorcontrib>Chartier, Timothy P.</creatorcontrib><creatorcontrib>Langville, Amy N.</creatorcontrib><creatorcontrib>Pedings-Behling, Kathryn E.</creatorcontrib><title>Fairness and the set of optimal rankings for the linear ordering problem</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings.</description><subject>Algorithms</subject><subject>Centroids</subject><subject>Control</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ranking</subject><subject>Research Article</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eD1I4mPqKIUqRIXOFuOH5CSJsFOD_l73AaJG4fVrjQzO5pB6BboPVBaPiQAWgGhLI8qJCXTGVqALDlhionzfPNKESEYvURXKe0ohUKyaoE2a9PEzqeETefw-Olx8iPuA-6HsdmbFkfTfTXdR8Khjye8bTpvIu6j8zEDeIh93fr9NboIpk3-5ncv0fv66W21IdvX55fV45ZYDmokwtSOgYUKQFSFLZ20qqbMVqUJomYQSpqTqGCkYNypEoR0ouCSgePWW86X6G7-m32_Dz6NetcfYpctNSsUSFowfmSxmWVjn1L0QQ8xx4mTBqqPjem5MZ0b06fG9JRFfBal4ZjMx7_X_6h-AJKjbc8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Anderson, Paul E.</creator><creator>Chartier, Timothy P.</creator><creator>Langville, Amy N.</creator><creator>Pedings-Behling, Kathryn E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220901</creationdate><title>Fairness and the set of optimal rankings for the linear ordering problem</title><author>Anderson, Paul E. ; Chartier, Timothy P. ; Langville, Amy N. ; Pedings-Behling, Kathryn E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Centroids</topic><topic>Control</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ranking</topic><topic>Research Article</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Paul E.</creatorcontrib><creatorcontrib>Chartier, Timothy P.</creatorcontrib><creatorcontrib>Langville, Amy N.</creatorcontrib><creatorcontrib>Pedings-Behling, Kathryn E.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Paul E.</au><au>Chartier, Timothy P.</au><au>Langville, Amy N.</au><au>Pedings-Behling, Kathryn E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fairness and the set of optimal rankings for the linear ordering problem</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>1289</spage><epage>1317</epage><pages>1289-1317</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-021-09650-y</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2022-09, Vol.23 (3), p.1289-1317
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_journals_2691506233
source Springer Nature - Complete Springer Journals
subjects Algorithms
Centroids
Control
Engineering
Environmental Management
Financial Engineering
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Ranking
Research Article
Systems Theory
title Fairness and the set of optimal rankings for the linear ordering problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fairness%20and%20the%20set%20of%20optimal%20rankings%20for%20the%20linear%20ordering%20problem&rft.jtitle=Optimization%20and%20engineering&rft.au=Anderson,%20Paul%20E.&rft.date=2022-09-01&rft.volume=23&rft.issue=3&rft.spage=1289&rft.epage=1317&rft.pages=1289-1317&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-021-09650-y&rft_dat=%3Cproquest_cross%3E2691506233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691506233&rft_id=info:pmid/&rfr_iscdi=true