Fairness and the set of optimal rankings for the linear ordering problem
The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multi...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2022-09, Vol.23 (3), p.1289-1317 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1317 |
---|---|
container_issue | 3 |
container_start_page | 1289 |
container_title | Optimization and engineering |
container_volume | 23 |
creator | Anderson, Paul E. Chartier, Timothy P. Langville, Amy N. Pedings-Behling, Kathryn E. |
description | The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings. |
doi_str_mv | 10.1007/s11081-021-09650-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691506233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691506233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eD1I4mPqKIUqRIXOFuOH5CSJsFOD_l73AaJG4fVrjQzO5pB6BboPVBaPiQAWgGhLI8qJCXTGVqALDlhionzfPNKESEYvURXKe0ohUKyaoE2a9PEzqeETefw-Olx8iPuA-6HsdmbFkfTfTXdR8Khjye8bTpvIu6j8zEDeIh93fr9NboIpk3-5ncv0fv66W21IdvX55fV45ZYDmokwtSOgYUKQFSFLZ20qqbMVqUJomYQSpqTqGCkYNypEoR0ouCSgePWW86X6G7-m32_Dz6NetcfYpctNSsUSFowfmSxmWVjn1L0QQ8xx4mTBqqPjem5MZ0b06fG9JRFfBal4ZjMx7_X_6h-AJKjbc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691506233</pqid></control><display><type>article</type><title>Fairness and the set of optimal rankings for the linear ordering problem</title><source>Springer Nature - Complete Springer Journals</source><creator>Anderson, Paul E. ; Chartier, Timothy P. ; Langville, Amy N. ; Pedings-Behling, Kathryn E.</creator><creatorcontrib>Anderson, Paul E. ; Chartier, Timothy P. ; Langville, Amy N. ; Pedings-Behling, Kathryn E.</creatorcontrib><description>The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-021-09650-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Centroids ; Control ; Engineering ; Environmental Management ; Financial Engineering ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Ranking ; Research Article ; Systems Theory</subject><ispartof>Optimization and engineering, 2022-09, Vol.23 (3), p.1289-1317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</citedby><cites>FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-021-09650-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-021-09650-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Anderson, Paul E.</creatorcontrib><creatorcontrib>Chartier, Timothy P.</creatorcontrib><creatorcontrib>Langville, Amy N.</creatorcontrib><creatorcontrib>Pedings-Behling, Kathryn E.</creatorcontrib><title>Fairness and the set of optimal rankings for the linear ordering problem</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings.</description><subject>Algorithms</subject><subject>Centroids</subject><subject>Control</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ranking</subject><subject>Research Article</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eD1I4mPqKIUqRIXOFuOH5CSJsFOD_l73AaJG4fVrjQzO5pB6BboPVBaPiQAWgGhLI8qJCXTGVqALDlhionzfPNKESEYvURXKe0ohUKyaoE2a9PEzqeETefw-Olx8iPuA-6HsdmbFkfTfTXdR8Khjye8bTpvIu6j8zEDeIh93fr9NboIpk3-5ncv0fv66W21IdvX55fV45ZYDmokwtSOgYUKQFSFLZ20qqbMVqUJomYQSpqTqGCkYNypEoR0ouCSgePWW86X6G7-m32_Dz6NetcfYpctNSsUSFowfmSxmWVjn1L0QQ8xx4mTBqqPjem5MZ0b06fG9JRFfBal4ZjMx7_X_6h-AJKjbc8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Anderson, Paul E.</creator><creator>Chartier, Timothy P.</creator><creator>Langville, Amy N.</creator><creator>Pedings-Behling, Kathryn E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220901</creationdate><title>Fairness and the set of optimal rankings for the linear ordering problem</title><author>Anderson, Paul E. ; Chartier, Timothy P. ; Langville, Amy N. ; Pedings-Behling, Kathryn E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4abd21c1811486c7d5c9b02c87af4b21f701089fa5423d97145d463521d3cec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Centroids</topic><topic>Control</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ranking</topic><topic>Research Article</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Paul E.</creatorcontrib><creatorcontrib>Chartier, Timothy P.</creatorcontrib><creatorcontrib>Langville, Amy N.</creatorcontrib><creatorcontrib>Pedings-Behling, Kathryn E.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Paul E.</au><au>Chartier, Timothy P.</au><au>Langville, Amy N.</au><au>Pedings-Behling, Kathryn E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fairness and the set of optimal rankings for the linear ordering problem</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>3</issue><spage>1289</spage><epage>1317</epage><pages>1289-1317</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>The goals of this paper are: (1) to bring attention to the existence and utility of multiple optimal rankings for the linear ordering problem, (2) to make the case for finding some or all of these multiple optimal rankings, (3) to provide an efficient algorithm that determines the existence of multiple optimal rankings, (4) to provide algorithms that find a sample of all optimal rankings, and (5) to connect multiple optimal rankings to fairness in ranking. We create algorithms to find the two nearest optimal rankings, the two farthest optimal rankings, and a so-called centroid ranking nearest to the centroid, which summarizes the information in all optimal rankings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-021-09650-y</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2022-09, Vol.23 (3), p.1289-1317 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_journals_2691506233 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Centroids Control Engineering Environmental Management Financial Engineering Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Ranking Research Article Systems Theory |
title | Fairness and the set of optimal rankings for the linear ordering problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fairness%20and%20the%20set%20of%20optimal%20rankings%20for%20the%20linear%20ordering%20problem&rft.jtitle=Optimization%20and%20engineering&rft.au=Anderson,%20Paul%20E.&rft.date=2022-09-01&rft.volume=23&rft.issue=3&rft.spage=1289&rft.epage=1317&rft.pages=1289-1317&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-021-09650-y&rft_dat=%3Cproquest_cross%3E2691506233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691506233&rft_id=info:pmid/&rfr_iscdi=true |