Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector

Lithium (Li) metal anodes have the potential to stimulate the development of secondary batteries due to their high theoretical specific capacities and low redox potentials among all possible solid secondary anode compounds. However, the growth of Li dendrites during repeated Li stripping/plating pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2022-09, Vol.65 (9), p.2385-2392
Hauptverfasser: Tang, Danlei, Yuan, Lixia, Liao, Yaqi, Jin, Wenxuan, Chen, Jie, Cheng, Zexiao, Li, Xiang, He, Bin, Li, Zhen, Huang, Yunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2392
container_issue 9
container_start_page 2385
container_title Science China materials
container_volume 65
creator Tang, Danlei
Yuan, Lixia
Liao, Yaqi
Jin, Wenxuan
Chen, Jie
Cheng, Zexiao
Li, Xiang
He, Bin
Li, Zhen
Huang, Yunhui
description Lithium (Li) metal anodes have the potential to stimulate the development of secondary batteries due to their high theoretical specific capacities and low redox potentials among all possible solid secondary anode compounds. However, the growth of Li dendrites during repeated Li stripping/plating processes leads to low coulombic efficiencies (CEs) and safety hazards, which significantly hinders their practical application. In this work, commercial Cu foil was modified in situ by Cu 3 N nanowires (Cu 3 N NWs/Cu) and used as the current collector for a Li anode. In addition to decreasing the true current density of the anode and alleviating the volume change during the cycles, Cu 3 N reacted with Li during the initial cycle (3Li + Cu 3 N → Li 3 N + 3Cu), which enabled the formation of a Li 3 N-rich solid electrolyte interphase (SEI). This Li3N-rich SEI with a high ionic conductivity not only boosted Li ion transport but also promoted the homogeneous deposition of Li via increased Li nucleation sites. The improvements in both mass transport and deposition dynamics restrained dendrite growth. As a result, the Cu 3 N NWs/Cu anode had stable Li plating/stripping over 270 cycles with a high average CE of 98.6% at 1 mA cm −2 , with Li capacities of 1 mA h cm −2 . A long cycling lifespan of 430 cycles was achieved using a full cell with a high-load LiFePO 4 cathode (mass loading: 10 mg cm −2 ) and a Cu 3 N NWs/Cu-Li anode ( N / P = 2.35), demonstrating the effectiveness and practicality of the Cu 3 N NWs/Cu current collector in stabilizing the Li anode.
doi_str_mv 10.1007/s40843-021-2036-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691506222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691506222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4f2bfa5e217393b3a83ff70d0b967ec736f08bebfae4be8c212ff0d22fa562c83</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxRdRsNT-Ad4CnqOTyX4epfhRKHrRc9jNJm3K7qYmWWn_e7Os4MnTvIHfe8O8JLllcM8AigefQplyCsgoAs_p6SJZIKsqmmbALqOGKqMlYn6drLw_AADLM8aqcpEcNv3R2W8z7EjYKyLPspu0D3VjOhPOxGoS596MPelVqDtSD7ZVnox-4tYjf6O9bY02qo0b0dZExJOayNE5NQQibdcpGay7Sa503Xm1-p3L5PP56WP9SrfvL5v145ZKnlWBphobXWcKWcEr3vC65FoX0EJT5YWSBc81lI2KjEobVUpkqDW0iNGUoyz5Mrmbc-NjX6PyQRzs6IZ4UmBesQxyRIwUmynprPdOaXF0pq_dWTAQU6tiblXEVsXUqjhFD84eH9lhp9xf8v-mH671e9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691506222</pqid></control><display><type>article</type><title>Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Tang, Danlei ; Yuan, Lixia ; Liao, Yaqi ; Jin, Wenxuan ; Chen, Jie ; Cheng, Zexiao ; Li, Xiang ; He, Bin ; Li, Zhen ; Huang, Yunhui</creator><creatorcontrib>Tang, Danlei ; Yuan, Lixia ; Liao, Yaqi ; Jin, Wenxuan ; Chen, Jie ; Cheng, Zexiao ; Li, Xiang ; He, Bin ; Li, Zhen ; Huang, Yunhui</creatorcontrib><description>Lithium (Li) metal anodes have the potential to stimulate the development of secondary batteries due to their high theoretical specific capacities and low redox potentials among all possible solid secondary anode compounds. However, the growth of Li dendrites during repeated Li stripping/plating processes leads to low coulombic efficiencies (CEs) and safety hazards, which significantly hinders their practical application. In this work, commercial Cu foil was modified in situ by Cu 3 N nanowires (Cu 3 N NWs/Cu) and used as the current collector for a Li anode. In addition to decreasing the true current density of the anode and alleviating the volume change during the cycles, Cu 3 N reacted with Li during the initial cycle (3Li + Cu 3 N → Li 3 N + 3Cu), which enabled the formation of a Li 3 N-rich solid electrolyte interphase (SEI). This Li3N-rich SEI with a high ionic conductivity not only boosted Li ion transport but also promoted the homogeneous deposition of Li via increased Li nucleation sites. The improvements in both mass transport and deposition dynamics restrained dendrite growth. As a result, the Cu 3 N NWs/Cu anode had stable Li plating/stripping over 270 cycles with a high average CE of 98.6% at 1 mA cm −2 , with Li capacities of 1 mA h cm −2 . A long cycling lifespan of 430 cycles was achieved using a full cell with a high-load LiFePO 4 cathode (mass loading: 10 mg cm −2 ) and a Cu 3 N NWs/Cu-Li anode ( N / P = 2.35), demonstrating the effectiveness and practicality of the Cu 3 N NWs/Cu current collector in stabilizing the Li anode.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-021-2036-x</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Copper ; Dendritic structure ; Deposition ; Ion currents ; Ion transport ; Lithium ; Mass transport ; Materials Science ; Metal foils ; Nanowires ; Nucleation ; Plating ; Solid electrolytes ; Storage batteries</subject><ispartof>Science China materials, 2022-09, Vol.65 (9), p.2385-2392</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4f2bfa5e217393b3a83ff70d0b967ec736f08bebfae4be8c212ff0d22fa562c83</citedby><cites>FETCH-LOGICAL-c359t-4f2bfa5e217393b3a83ff70d0b967ec736f08bebfae4be8c212ff0d22fa562c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-021-2036-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-021-2036-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tang, Danlei</creatorcontrib><creatorcontrib>Yuan, Lixia</creatorcontrib><creatorcontrib>Liao, Yaqi</creatorcontrib><creatorcontrib>Jin, Wenxuan</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Cheng, Zexiao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Lithium (Li) metal anodes have the potential to stimulate the development of secondary batteries due to their high theoretical specific capacities and low redox potentials among all possible solid secondary anode compounds. However, the growth of Li dendrites during repeated Li stripping/plating processes leads to low coulombic efficiencies (CEs) and safety hazards, which significantly hinders their practical application. In this work, commercial Cu foil was modified in situ by Cu 3 N nanowires (Cu 3 N NWs/Cu) and used as the current collector for a Li anode. In addition to decreasing the true current density of the anode and alleviating the volume change during the cycles, Cu 3 N reacted with Li during the initial cycle (3Li + Cu 3 N → Li 3 N + 3Cu), which enabled the formation of a Li 3 N-rich solid electrolyte interphase (SEI). This Li3N-rich SEI with a high ionic conductivity not only boosted Li ion transport but also promoted the homogeneous deposition of Li via increased Li nucleation sites. The improvements in both mass transport and deposition dynamics restrained dendrite growth. As a result, the Cu 3 N NWs/Cu anode had stable Li plating/stripping over 270 cycles with a high average CE of 98.6% at 1 mA cm −2 , with Li capacities of 1 mA h cm −2 . A long cycling lifespan of 430 cycles was achieved using a full cell with a high-load LiFePO 4 cathode (mass loading: 10 mg cm −2 ) and a Cu 3 N NWs/Cu-Li anode ( N / P = 2.35), demonstrating the effectiveness and practicality of the Cu 3 N NWs/Cu current collector in stabilizing the Li anode.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Mass transport</subject><subject>Materials Science</subject><subject>Metal foils</subject><subject>Nanowires</subject><subject>Nucleation</subject><subject>Plating</subject><subject>Solid electrolytes</subject><subject>Storage batteries</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxRdRsNT-Ad4CnqOTyX4epfhRKHrRc9jNJm3K7qYmWWn_e7Os4MnTvIHfe8O8JLllcM8AigefQplyCsgoAs_p6SJZIKsqmmbALqOGKqMlYn6drLw_AADLM8aqcpEcNv3R2W8z7EjYKyLPspu0D3VjOhPOxGoS596MPelVqDtSD7ZVnox-4tYjf6O9bY02qo0b0dZExJOayNE5NQQibdcpGay7Sa503Xm1-p3L5PP56WP9SrfvL5v145ZKnlWBphobXWcKWcEr3vC65FoX0EJT5YWSBc81lI2KjEobVUpkqDW0iNGUoyz5Mrmbc-NjX6PyQRzs6IZ4UmBesQxyRIwUmynprPdOaXF0pq_dWTAQU6tiblXEVsXUqjhFD84eH9lhp9xf8v-mH671e9o</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Tang, Danlei</creator><creator>Yuan, Lixia</creator><creator>Liao, Yaqi</creator><creator>Jin, Wenxuan</creator><creator>Chen, Jie</creator><creator>Cheng, Zexiao</creator><creator>Li, Xiang</creator><creator>He, Bin</creator><creator>Li, Zhen</creator><creator>Huang, Yunhui</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector</title><author>Tang, Danlei ; Yuan, Lixia ; Liao, Yaqi ; Jin, Wenxuan ; Chen, Jie ; Cheng, Zexiao ; Li, Xiang ; He, Bin ; Li, Zhen ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4f2bfa5e217393b3a83ff70d0b967ec736f08bebfae4be8c212ff0d22fa562c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Mass transport</topic><topic>Materials Science</topic><topic>Metal foils</topic><topic>Nanowires</topic><topic>Nucleation</topic><topic>Plating</topic><topic>Solid electrolytes</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Danlei</creatorcontrib><creatorcontrib>Yuan, Lixia</creatorcontrib><creatorcontrib>Liao, Yaqi</creatorcontrib><creatorcontrib>Jin, Wenxuan</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Cheng, Zexiao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>He, Bin</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Danlei</au><au>Yuan, Lixia</au><au>Liao, Yaqi</au><au>Jin, Wenxuan</au><au>Chen, Jie</au><au>Cheng, Zexiao</au><au>Li, Xiang</au><au>He, Bin</au><au>Li, Zhen</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>65</volume><issue>9</issue><spage>2385</spage><epage>2392</epage><pages>2385-2392</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Lithium (Li) metal anodes have the potential to stimulate the development of secondary batteries due to their high theoretical specific capacities and low redox potentials among all possible solid secondary anode compounds. However, the growth of Li dendrites during repeated Li stripping/plating processes leads to low coulombic efficiencies (CEs) and safety hazards, which significantly hinders their practical application. In this work, commercial Cu foil was modified in situ by Cu 3 N nanowires (Cu 3 N NWs/Cu) and used as the current collector for a Li anode. In addition to decreasing the true current density of the anode and alleviating the volume change during the cycles, Cu 3 N reacted with Li during the initial cycle (3Li + Cu 3 N → Li 3 N + 3Cu), which enabled the formation of a Li 3 N-rich solid electrolyte interphase (SEI). This Li3N-rich SEI with a high ionic conductivity not only boosted Li ion transport but also promoted the homogeneous deposition of Li via increased Li nucleation sites. The improvements in both mass transport and deposition dynamics restrained dendrite growth. As a result, the Cu 3 N NWs/Cu anode had stable Li plating/stripping over 270 cycles with a high average CE of 98.6% at 1 mA cm −2 , with Li capacities of 1 mA h cm −2 . A long cycling lifespan of 430 cycles was achieved using a full cell with a high-load LiFePO 4 cathode (mass loading: 10 mg cm −2 ) and a Cu 3 N NWs/Cu-Li anode ( N / P = 2.35), demonstrating the effectiveness and practicality of the Cu 3 N NWs/Cu current collector in stabilizing the Li anode.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-021-2036-x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2022-09, Vol.65 (9), p.2385-2392
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2691506222
source SpringerNature Journals; Alma/SFX Local Collection
subjects Chemistry and Materials Science
Chemistry/Food Science
Copper
Dendritic structure
Deposition
Ion currents
Ion transport
Lithium
Mass transport
Materials Science
Metal foils
Nanowires
Nucleation
Plating
Solid electrolytes
Storage batteries
title Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20cycling%20stability%20of%20lithium%20metal%20anodes%20using%20Cu3N-modified%20Cu%20foil%20as%20a%20current%20collector&rft.jtitle=Science%20China%20materials&rft.au=Tang,%20Danlei&rft.date=2022-09-01&rft.volume=65&rft.issue=9&rft.spage=2385&rft.epage=2392&rft.pages=2385-2392&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-021-2036-x&rft_dat=%3Cproquest_cross%3E2691506222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691506222&rft_id=info:pmid/&rfr_iscdi=true