Energy harvesting efficiency of a quasi-zero stiffness energy harvester

In this paper, a study on modelling energy harvesting efficiency of a quasi-zero stiffness system is presented. Mechanical characteristics of the system are identified, and the effect of its stiffness and geometry on the function describing energy potential barrier is determined. It has been shown n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2022, Vol.231 (8), p.1557-1565
Hauptverfasser: Margielewicz, Jerzy, Gąska, Damian, Litak, Grzegorz, Wolszczak, Piotr, Zhou, Shengxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1565
container_issue 8
container_start_page 1557
container_title The European physical journal. ST, Special topics
container_volume 231
creator Margielewicz, Jerzy
Gąska, Damian
Litak, Grzegorz
Wolszczak, Piotr
Zhou, Shengxi
description In this paper, a study on modelling energy harvesting efficiency of a quasi-zero stiffness system is presented. Mechanical characteristics of the system are identified, and the effect of its stiffness and geometry on the function describing energy potential barrier is determined. It has been shown numerically that an increase in equivalent stiffness of the quasi-zero stiffness system limits the potential barrier width. On the other hand, increased the spacing between compensating springs results in increased barrier width. Simulation results of the quasi-zero stiffness system are compared with those obtained for a triple-well system with permanent magnets. Based on mathematical models, multi-color diagrams depicting the largest Lyapunov exponent are plotted. The effect of selected values of external excitation frequency and amplitude on the efficiency of energy harvesting is determined. The rms value of time sequence is taken as a measure of the energy harvesting efficiency. Obtained numerical results are plotted as phase trajectories.
doi_str_mv 10.1140/epjs/s11734-022-00500-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691505216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691505216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d5b0d68eb690b5864fc654f8037c32acb992dc3a1773555ff16fe381d34b3243</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wYDn2Ey-dvcopbZCwUvvIZud1C262yatUH-9qauIJ08zh_d5Z3gIuQV-D6D4BLebNEkAhVSMC8E415wzOCMjqDQwozic_-xS60tyldImh4yo5IjMZx3G9ZG-uPiOad92a4ohtL7Fzh9pH6iju4NLLfvA2NMcCKHDlCj-wTBek4vgXhPefM8xWT3OVtMFWz7Pn6YPS-alVHvW6Jo3psTaVLzWpVHBG61CyWXhpXC-rirReOmgKPKvOgQwAWUJjVS1FEqOyd1Qu4397pAv201_iF2-aIWpQHMtwORUMaR87FOKGOw2tm8uHi1we5JmT9LsIM1mafZLmoVMlgOZMtGtMf72_4d-Asgic10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691505216</pqid></control><display><type>article</type><title>Energy harvesting efficiency of a quasi-zero stiffness energy harvester</title><source>SpringerLink Journals - AutoHoldings</source><creator>Margielewicz, Jerzy ; Gąska, Damian ; Litak, Grzegorz ; Wolszczak, Piotr ; Zhou, Shengxi</creator><creatorcontrib>Margielewicz, Jerzy ; Gąska, Damian ; Litak, Grzegorz ; Wolszczak, Piotr ; Zhou, Shengxi</creatorcontrib><description>In this paper, a study on modelling energy harvesting efficiency of a quasi-zero stiffness system is presented. Mechanical characteristics of the system are identified, and the effect of its stiffness and geometry on the function describing energy potential barrier is determined. It has been shown numerically that an increase in equivalent stiffness of the quasi-zero stiffness system limits the potential barrier width. On the other hand, increased the spacing between compensating springs results in increased barrier width. Simulation results of the quasi-zero stiffness system are compared with those obtained for a triple-well system with permanent magnets. Based on mathematical models, multi-color diagrams depicting the largest Lyapunov exponent are plotted. The effect of selected values of external excitation frequency and amplitude on the efficiency of energy harvesting is determined. The rms value of time sequence is taken as a measure of the energy harvesting efficiency. Obtained numerical results are plotted as phase trajectories.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-022-00500-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Efficiency ; Energy ; Energy harvesting ; Energy Harvesting: Materials ; Liapunov exponents ; Materials Science ; Mathematical models ; Measurement Science and Instrumentation ; Mechanical properties ; Molecular ; Optical and Plasma Physics ; Permanent magnets ; Physics ; Physics and Astronomy ; Regular Article ; Springs (elastic) ; Stiffness ; Structures and Methods</subject><ispartof>The European physical journal. ST, Special topics, 2022, Vol.231 (8), p.1557-1565</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d5b0d68eb690b5864fc654f8037c32acb992dc3a1773555ff16fe381d34b3243</citedby><cites>FETCH-LOGICAL-c334t-d5b0d68eb690b5864fc654f8037c32acb992dc3a1773555ff16fe381d34b3243</cites><orcidid>0000-0001-8603-4647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-022-00500-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-022-00500-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Margielewicz, Jerzy</creatorcontrib><creatorcontrib>Gąska, Damian</creatorcontrib><creatorcontrib>Litak, Grzegorz</creatorcontrib><creatorcontrib>Wolszczak, Piotr</creatorcontrib><creatorcontrib>Zhou, Shengxi</creatorcontrib><title>Energy harvesting efficiency of a quasi-zero stiffness energy harvester</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>In this paper, a study on modelling energy harvesting efficiency of a quasi-zero stiffness system is presented. Mechanical characteristics of the system are identified, and the effect of its stiffness and geometry on the function describing energy potential barrier is determined. It has been shown numerically that an increase in equivalent stiffness of the quasi-zero stiffness system limits the potential barrier width. On the other hand, increased the spacing between compensating springs results in increased barrier width. Simulation results of the quasi-zero stiffness system are compared with those obtained for a triple-well system with permanent magnets. Based on mathematical models, multi-color diagrams depicting the largest Lyapunov exponent are plotted. The effect of selected values of external excitation frequency and amplitude on the efficiency of energy harvesting is determined. The rms value of time sequence is taken as a measure of the energy harvesting efficiency. Obtained numerical results are plotted as phase trajectories.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Energy Harvesting: Materials</subject><subject>Liapunov exponents</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Mechanical properties</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Permanent magnets</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Springs (elastic)</subject><subject>Stiffness</subject><subject>Structures and Methods</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wYDn2Ey-dvcopbZCwUvvIZud1C262yatUH-9qauIJ08zh_d5Z3gIuQV-D6D4BLebNEkAhVSMC8E415wzOCMjqDQwozic_-xS60tyldImh4yo5IjMZx3G9ZG-uPiOad92a4ohtL7Fzh9pH6iju4NLLfvA2NMcCKHDlCj-wTBek4vgXhPefM8xWT3OVtMFWz7Pn6YPS-alVHvW6Jo3psTaVLzWpVHBG61CyWXhpXC-rirReOmgKPKvOgQwAWUJjVS1FEqOyd1Qu4397pAv201_iF2-aIWpQHMtwORUMaR87FOKGOw2tm8uHi1we5JmT9LsIM1mafZLmoVMlgOZMtGtMf72_4d-Asgic10</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Margielewicz, Jerzy</creator><creator>Gąska, Damian</creator><creator>Litak, Grzegorz</creator><creator>Wolszczak, Piotr</creator><creator>Zhou, Shengxi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8603-4647</orcidid></search><sort><creationdate>2022</creationdate><title>Energy harvesting efficiency of a quasi-zero stiffness energy harvester</title><author>Margielewicz, Jerzy ; Gąska, Damian ; Litak, Grzegorz ; Wolszczak, Piotr ; Zhou, Shengxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d5b0d68eb690b5864fc654f8037c32acb992dc3a1773555ff16fe381d34b3243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Energy Harvesting: Materials</topic><topic>Liapunov exponents</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Mechanical properties</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Permanent magnets</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Springs (elastic)</topic><topic>Stiffness</topic><topic>Structures and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margielewicz, Jerzy</creatorcontrib><creatorcontrib>Gąska, Damian</creatorcontrib><creatorcontrib>Litak, Grzegorz</creatorcontrib><creatorcontrib>Wolszczak, Piotr</creatorcontrib><creatorcontrib>Zhou, Shengxi</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margielewicz, Jerzy</au><au>Gąska, Damian</au><au>Litak, Grzegorz</au><au>Wolszczak, Piotr</au><au>Zhou, Shengxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy harvesting efficiency of a quasi-zero stiffness energy harvester</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2022</date><risdate>2022</risdate><volume>231</volume><issue>8</issue><spage>1557</spage><epage>1565</epage><pages>1557-1565</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In this paper, a study on modelling energy harvesting efficiency of a quasi-zero stiffness system is presented. Mechanical characteristics of the system are identified, and the effect of its stiffness and geometry on the function describing energy potential barrier is determined. It has been shown numerically that an increase in equivalent stiffness of the quasi-zero stiffness system limits the potential barrier width. On the other hand, increased the spacing between compensating springs results in increased barrier width. Simulation results of the quasi-zero stiffness system are compared with those obtained for a triple-well system with permanent magnets. Based on mathematical models, multi-color diagrams depicting the largest Lyapunov exponent are plotted. The effect of selected values of external excitation frequency and amplitude on the efficiency of energy harvesting is determined. The rms value of time sequence is taken as a measure of the energy harvesting efficiency. Obtained numerical results are plotted as phase trajectories.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-022-00500-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8603-4647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2022, Vol.231 (8), p.1557-1565
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2691505216
source SpringerLink Journals - AutoHoldings
subjects Atomic
Classical and Continuum Physics
Condensed Matter Physics
Efficiency
Energy
Energy harvesting
Energy Harvesting: Materials
Liapunov exponents
Materials Science
Mathematical models
Measurement Science and Instrumentation
Mechanical properties
Molecular
Optical and Plasma Physics
Permanent magnets
Physics
Physics and Astronomy
Regular Article
Springs (elastic)
Stiffness
Structures and Methods
title Energy harvesting efficiency of a quasi-zero stiffness energy harvester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20harvesting%20efficiency%20of%20a%20quasi-zero%20stiffness%20energy%20harvester&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Margielewicz,%20Jerzy&rft.date=2022&rft.volume=231&rft.issue=8&rft.spage=1557&rft.epage=1565&rft.pages=1557-1565&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-022-00500-1&rft_dat=%3Cproquest_cross%3E2691505216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691505216&rft_id=info:pmid/&rfr_iscdi=true