The edge of discovery: Controlling the local false discovery rate at the margin

Despite the popularity of the false discovery rate (FDR) as an error control metric for large-scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr), defined as the posterior probability that a particular null hypothesis is false, is a more directly relevant sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Soloff, Jake A, Xiang, Daniel, Fithian, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Soloff, Jake A
Xiang, Daniel
Fithian, William
description Despite the popularity of the false discovery rate (FDR) as an error control metric for large-scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr), defined as the posterior probability that a particular null hypothesis is false, is a more directly relevant standard for justifying and interpreting individual rejections. However, the lfdr is difficult to work with in small samples, as the prior distribution is typically unknown. We propose a simple multiple testing procedure and prove that it controls the expectation of the maximum lfdr across all rejections; equivalently, it controls the probability that the rejection with the largest p-value is a false discovery. Our method operates without knowledge of the prior, assuming only that the p-value density is uniform under the null and decreasing under the alternative. We also show that our method asymptotically implements the oracle Bayes procedure for a weighted classification risk, optimally trading off between false positives and false negatives. We derive the limiting distribution of the attained maximum lfdr over the rejections, and the limiting empirical Bayes regret relative to the oracle procedure.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2691249105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691249105</sourcerecordid><originalsourceid>FETCH-proquest_journals_26912491053</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLqQ3bbWuRXFz6V5Ce_tHTDRJBd_eUgRXpzOcb8UCFCKOjgnihoXOjZxzzA6YpiJgt7InoKYjMC00g6vNi-z7BIXR3hqlBt2Bn4kytVTQSuXox8BKTyD9Iu7SdoPesfWCwm-3bH85l8U1eljznMj5ajST1fOqMMtjTPKYp-I_9QHmnT45</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691249105</pqid></control><display><type>article</type><title>The edge of discovery: Controlling the local false discovery rate at the margin</title><source>Free E- Journals</source><creator>Soloff, Jake A ; Xiang, Daniel ; Fithian, William</creator><creatorcontrib>Soloff, Jake A ; Xiang, Daniel ; Fithian, William</creatorcontrib><description>Despite the popularity of the false discovery rate (FDR) as an error control metric for large-scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr), defined as the posterior probability that a particular null hypothesis is false, is a more directly relevant standard for justifying and interpreting individual rejections. However, the lfdr is difficult to work with in small samples, as the prior distribution is typically unknown. We propose a simple multiple testing procedure and prove that it controls the expectation of the maximum lfdr across all rejections; equivalently, it controls the probability that the rejection with the largest p-value is a false discovery. Our method operates without knowledge of the prior, assuming only that the p-value density is uniform under the null and decreasing under the alternative. We also show that our method asymptotically implements the oracle Bayes procedure for a weighted classification risk, optimally trading off between false positives and false negatives. We derive the limiting distribution of the attained maximum lfdr over the rejections, and the limiting empirical Bayes regret relative to the oracle procedure.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conditional probability ; Constraining ; Test procedures</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Soloff, Jake A</creatorcontrib><creatorcontrib>Xiang, Daniel</creatorcontrib><creatorcontrib>Fithian, William</creatorcontrib><title>The edge of discovery: Controlling the local false discovery rate at the margin</title><title>arXiv.org</title><description>Despite the popularity of the false discovery rate (FDR) as an error control metric for large-scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr), defined as the posterior probability that a particular null hypothesis is false, is a more directly relevant standard for justifying and interpreting individual rejections. However, the lfdr is difficult to work with in small samples, as the prior distribution is typically unknown. We propose a simple multiple testing procedure and prove that it controls the expectation of the maximum lfdr across all rejections; equivalently, it controls the probability that the rejection with the largest p-value is a false discovery. Our method operates without knowledge of the prior, assuming only that the p-value density is uniform under the null and decreasing under the alternative. We also show that our method asymptotically implements the oracle Bayes procedure for a weighted classification risk, optimally trading off between false positives and false negatives. We derive the limiting distribution of the attained maximum lfdr over the rejections, and the limiting empirical Bayes regret relative to the oracle procedure.</description><subject>Conditional probability</subject><subject>Constraining</subject><subject>Test procedures</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLqQ3bbWuRXFz6V5Ce_tHTDRJBd_eUgRXpzOcb8UCFCKOjgnihoXOjZxzzA6YpiJgt7InoKYjMC00g6vNi-z7BIXR3hqlBt2Bn4kytVTQSuXox8BKTyD9Iu7SdoPesfWCwm-3bH85l8U1eljznMj5ajST1fOqMMtjTPKYp-I_9QHmnT45</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Soloff, Jake A</creator><creator>Xiang, Daniel</creator><creator>Fithian, William</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230921</creationdate><title>The edge of discovery: Controlling the local false discovery rate at the margin</title><author>Soloff, Jake A ; Xiang, Daniel ; Fithian, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26912491053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conditional probability</topic><topic>Constraining</topic><topic>Test procedures</topic><toplevel>online_resources</toplevel><creatorcontrib>Soloff, Jake A</creatorcontrib><creatorcontrib>Xiang, Daniel</creatorcontrib><creatorcontrib>Fithian, William</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloff, Jake A</au><au>Xiang, Daniel</au><au>Fithian, William</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The edge of discovery: Controlling the local false discovery rate at the margin</atitle><jtitle>arXiv.org</jtitle><date>2023-09-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Despite the popularity of the false discovery rate (FDR) as an error control metric for large-scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr), defined as the posterior probability that a particular null hypothesis is false, is a more directly relevant standard for justifying and interpreting individual rejections. However, the lfdr is difficult to work with in small samples, as the prior distribution is typically unknown. We propose a simple multiple testing procedure and prove that it controls the expectation of the maximum lfdr across all rejections; equivalently, it controls the probability that the rejection with the largest p-value is a false discovery. Our method operates without knowledge of the prior, assuming only that the p-value density is uniform under the null and decreasing under the alternative. We also show that our method asymptotically implements the oracle Bayes procedure for a weighted classification risk, optimally trading off between false positives and false negatives. We derive the limiting distribution of the attained maximum lfdr over the rejections, and the limiting empirical Bayes regret relative to the oracle procedure.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2691249105
source Free E- Journals
subjects Conditional probability
Constraining
Test procedures
title The edge of discovery: Controlling the local false discovery rate at the margin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20edge%20of%20discovery:%20Controlling%20the%20local%20false%20discovery%20rate%20at%20the%20margin&rft.jtitle=arXiv.org&rft.au=Soloff,%20Jake%20A&rft.date=2023-09-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2691249105%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691249105&rft_id=info:pmid/&rfr_iscdi=true