Optimization of fermentation conditions for the production of acidophilic β-glucosidase by Trichoderma reesei S12 from mangrove soil
Vegetative biomass contains a large number of macromolecular substances such as cellulose and hemicellulose, which can be used by microorganisms to produce biofuels and other chemical byproducts. In this study, a filamentous fungus with high β-glucosidase activity was isolated from mangrove soil in...
Gespeichert in:
Veröffentlicht in: | Biotechnology, biotechnological equipment biotechnological equipment, 2021-01, Vol.35 (1), p.1838-1849 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1849 |
---|---|
container_issue | 1 |
container_start_page | 1838 |
container_title | Biotechnology, biotechnological equipment |
container_volume | 35 |
creator | Sun, Nan Liu, Xiaoxuan Wang, Xuemei Shi, Huiyu Zhang, Haiwen Li, Lianbin Na, Wei Guan, Qingfeng |
description | Vegetative biomass contains a large number of macromolecular substances such as cellulose and hemicellulose, which can be used by microorganisms to produce biofuels and other chemical byproducts. In this study, a filamentous fungus with high β-glucosidase activity was isolated from mangrove soil in Hainan Province, China. Through morphological identification and internal transcribed spacer (ITS) sequence analysis, the strain was identified as Trichoderma reesei. Fermentation conditions were optimized with the response surface method to improve β-glucosidase activity. Inoculum, pH and liquid volume in flask were found to be the key factors. We further examined the optimal range of the three factors using steepest ascent path, and optimum conditions were further investigated according to a Box-Behnken design. We calculated the optimized fermentation conditions to be: carbon source (microcrystalline cellulose (MCC)) 1%, nitrogen source (yeast extract) 0.5%, pH 3.68, inoculum of 3.22 × 10
5
cfu/mL, temperature 28 °C, shaking speed of 160 rpm, and liquid volume in flask of 84.74 mL/250 mL. These conditions increased the β-glucosidase activity 6-fold to 1.13 U/mL compared to that before optimization. The resulting β-glucosidase had an optimum pH of 5.0 and an optimum temperature of 45 °C, and showed high thermal stability at 30-60 °C. |
doi_str_mv | 10.1080/13102818.2021.1984989 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2691153430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9ae11bfa32ba400bb28bc78580f28f17</doaj_id><sourcerecordid>2691153430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8a244fe356fe690abc88b2e5af3b902d3b25b72847fc00f4c23f156863cbae3a3</originalsourceid><addsrcrecordid>eNp9kUuO1DAQhiMEEsPAEZAssU5TfiXODjTiMdJIs2BYW2XH7nYrSTV2GtTsuRAH4UykJzMsWdVDf31Vqr-qXnPYcDDwlksOwnCzESD4hndGdaZ7Ul0sfVVLLeHpfQ71WfS8elHKHqAF4O1F9ev2MKcx_cQ50cQoshjyGKZ5rT1NfTpnhUXKbN4FdsjUH_2jGn3q6bBLQ_Lsz-96Oxw9ldRjCcyd2F1Ofkf9QkSWQyghsS9csJhpZCNO20zfAyuUhpfVs4hDCa8e4mX19eOHu6vP9c3tp-ur9ze1V5rPtUGhVAxSNzE0HaDzxjgRNEbpOhC9dEK7VhjVRg8QlRcyct2YRnqHQaK8rK5Xbk-4t4ecRswnS5jsfYPy1mKekx-C7TBw7iJK4VABOCeM863RBqIwkbcL683KWj7y7RjKbPd0zNNyvhVNx7mWSsKi0qvKZyolh_hvKwd7ds8-umfP7tkH95a5d-tcmpbPj_iD8tDbGU8D5Zhx8qlY-X_EXxCDo_Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691153430</pqid></control><display><type>article</type><title>Optimization of fermentation conditions for the production of acidophilic β-glucosidase by Trichoderma reesei S12 from mangrove soil</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Nan ; Liu, Xiaoxuan ; Wang, Xuemei ; Shi, Huiyu ; Zhang, Haiwen ; Li, Lianbin ; Na, Wei ; Guan, Qingfeng</creator><creatorcontrib>Sun, Nan ; Liu, Xiaoxuan ; Wang, Xuemei ; Shi, Huiyu ; Zhang, Haiwen ; Li, Lianbin ; Na, Wei ; Guan, Qingfeng</creatorcontrib><description>Vegetative biomass contains a large number of macromolecular substances such as cellulose and hemicellulose, which can be used by microorganisms to produce biofuels and other chemical byproducts. In this study, a filamentous fungus with high β-glucosidase activity was isolated from mangrove soil in Hainan Province, China. Through morphological identification and internal transcribed spacer (ITS) sequence analysis, the strain was identified as Trichoderma reesei. Fermentation conditions were optimized with the response surface method to improve β-glucosidase activity. Inoculum, pH and liquid volume in flask were found to be the key factors. We further examined the optimal range of the three factors using steepest ascent path, and optimum conditions were further investigated according to a Box-Behnken design. We calculated the optimized fermentation conditions to be: carbon source (microcrystalline cellulose (MCC)) 1%, nitrogen source (yeast extract) 0.5%, pH 3.68, inoculum of 3.22 × 10
5
cfu/mL, temperature 28 °C, shaking speed of 160 rpm, and liquid volume in flask of 84.74 mL/250 mL. These conditions increased the β-glucosidase activity 6-fold to 1.13 U/mL compared to that before optimization. The resulting β-glucosidase had an optimum pH of 5.0 and an optimum temperature of 45 °C, and showed high thermal stability at 30-60 °C.</description><identifier>ISSN: 1310-2818</identifier><identifier>EISSN: 1314-3530</identifier><identifier>DOI: 10.1080/13102818.2021.1984989</identifier><language>eng</language><publisher>Sofia: Taylor & Francis</publisher><subject>Biofuels ; Carbon sources ; Cellulose ; Crystalline cellulose ; Design optimization ; Fermentation ; Fungi ; Glucosidase ; Hemicellulose ; Inoculum ; Macromolecules ; mangrove ; Microorganisms ; pH effects ; Response surface methodology ; response surface methodology (RSM) ; Sequence analysis ; Shaking ; Soils ; Thermal stability ; Trichoderma reesei ; Yeasts ; β-Glucosidase</subject><ispartof>Biotechnology, biotechnological equipment, 2021-01, Vol.35 (1), p.1838-1849</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8a244fe356fe690abc88b2e5af3b902d3b25b72847fc00f4c23f156863cbae3a3</citedby><cites>FETCH-LOGICAL-c451t-8a244fe356fe690abc88b2e5af3b902d3b25b72847fc00f4c23f156863cbae3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13102818.2021.1984989$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13102818.2021.1984989$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Sun, Nan</creatorcontrib><creatorcontrib>Liu, Xiaoxuan</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Shi, Huiyu</creatorcontrib><creatorcontrib>Zhang, Haiwen</creatorcontrib><creatorcontrib>Li, Lianbin</creatorcontrib><creatorcontrib>Na, Wei</creatorcontrib><creatorcontrib>Guan, Qingfeng</creatorcontrib><title>Optimization of fermentation conditions for the production of acidophilic β-glucosidase by Trichoderma reesei S12 from mangrove soil</title><title>Biotechnology, biotechnological equipment</title><description>Vegetative biomass contains a large number of macromolecular substances such as cellulose and hemicellulose, which can be used by microorganisms to produce biofuels and other chemical byproducts. In this study, a filamentous fungus with high β-glucosidase activity was isolated from mangrove soil in Hainan Province, China. Through morphological identification and internal transcribed spacer (ITS) sequence analysis, the strain was identified as Trichoderma reesei. Fermentation conditions were optimized with the response surface method to improve β-glucosidase activity. Inoculum, pH and liquid volume in flask were found to be the key factors. We further examined the optimal range of the three factors using steepest ascent path, and optimum conditions were further investigated according to a Box-Behnken design. We calculated the optimized fermentation conditions to be: carbon source (microcrystalline cellulose (MCC)) 1%, nitrogen source (yeast extract) 0.5%, pH 3.68, inoculum of 3.22 × 10
5
cfu/mL, temperature 28 °C, shaking speed of 160 rpm, and liquid volume in flask of 84.74 mL/250 mL. These conditions increased the β-glucosidase activity 6-fold to 1.13 U/mL compared to that before optimization. The resulting β-glucosidase had an optimum pH of 5.0 and an optimum temperature of 45 °C, and showed high thermal stability at 30-60 °C.</description><subject>Biofuels</subject><subject>Carbon sources</subject><subject>Cellulose</subject><subject>Crystalline cellulose</subject><subject>Design optimization</subject><subject>Fermentation</subject><subject>Fungi</subject><subject>Glucosidase</subject><subject>Hemicellulose</subject><subject>Inoculum</subject><subject>Macromolecules</subject><subject>mangrove</subject><subject>Microorganisms</subject><subject>pH effects</subject><subject>Response surface methodology</subject><subject>response surface methodology (RSM)</subject><subject>Sequence analysis</subject><subject>Shaking</subject><subject>Soils</subject><subject>Thermal stability</subject><subject>Trichoderma reesei</subject><subject>Yeasts</subject><subject>β-Glucosidase</subject><issn>1310-2818</issn><issn>1314-3530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUuO1DAQhiMEEsPAEZAssU5TfiXODjTiMdJIs2BYW2XH7nYrSTV2GtTsuRAH4UykJzMsWdVDf31Vqr-qXnPYcDDwlksOwnCzESD4hndGdaZ7Ul0sfVVLLeHpfQ71WfS8elHKHqAF4O1F9ev2MKcx_cQ50cQoshjyGKZ5rT1NfTpnhUXKbN4FdsjUH_2jGn3q6bBLQ_Lsz-96Oxw9ldRjCcyd2F1Ofkf9QkSWQyghsS9csJhpZCNO20zfAyuUhpfVs4hDCa8e4mX19eOHu6vP9c3tp-ur9ze1V5rPtUGhVAxSNzE0HaDzxjgRNEbpOhC9dEK7VhjVRg8QlRcyct2YRnqHQaK8rK5Xbk-4t4ecRswnS5jsfYPy1mKekx-C7TBw7iJK4VABOCeM863RBqIwkbcL683KWj7y7RjKbPd0zNNyvhVNx7mWSsKi0qvKZyolh_hvKwd7ds8-umfP7tkH95a5d-tcmpbPj_iD8tDbGU8D5Zhx8qlY-X_EXxCDo_Y</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Sun, Nan</creator><creator>Liu, Xiaoxuan</creator><creator>Wang, Xuemei</creator><creator>Shi, Huiyu</creator><creator>Zhang, Haiwen</creator><creator>Li, Lianbin</creator><creator>Na, Wei</creator><creator>Guan, Qingfeng</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7ST</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Optimization of fermentation conditions for the production of acidophilic β-glucosidase by Trichoderma reesei S12 from mangrove soil</title><author>Sun, Nan ; Liu, Xiaoxuan ; Wang, Xuemei ; Shi, Huiyu ; Zhang, Haiwen ; Li, Lianbin ; Na, Wei ; Guan, Qingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8a244fe356fe690abc88b2e5af3b902d3b25b72847fc00f4c23f156863cbae3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biofuels</topic><topic>Carbon sources</topic><topic>Cellulose</topic><topic>Crystalline cellulose</topic><topic>Design optimization</topic><topic>Fermentation</topic><topic>Fungi</topic><topic>Glucosidase</topic><topic>Hemicellulose</topic><topic>Inoculum</topic><topic>Macromolecules</topic><topic>mangrove</topic><topic>Microorganisms</topic><topic>pH effects</topic><topic>Response surface methodology</topic><topic>response surface methodology (RSM)</topic><topic>Sequence analysis</topic><topic>Shaking</topic><topic>Soils</topic><topic>Thermal stability</topic><topic>Trichoderma reesei</topic><topic>Yeasts</topic><topic>β-Glucosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Nan</creatorcontrib><creatorcontrib>Liu, Xiaoxuan</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Shi, Huiyu</creatorcontrib><creatorcontrib>Zhang, Haiwen</creatorcontrib><creatorcontrib>Li, Lianbin</creatorcontrib><creatorcontrib>Na, Wei</creatorcontrib><creatorcontrib>Guan, Qingfeng</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biotechnology, biotechnological equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Nan</au><au>Liu, Xiaoxuan</au><au>Wang, Xuemei</au><au>Shi, Huiyu</au><au>Zhang, Haiwen</au><au>Li, Lianbin</au><au>Na, Wei</au><au>Guan, Qingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of fermentation conditions for the production of acidophilic β-glucosidase by Trichoderma reesei S12 from mangrove soil</atitle><jtitle>Biotechnology, biotechnological equipment</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>35</volume><issue>1</issue><spage>1838</spage><epage>1849</epage><pages>1838-1849</pages><issn>1310-2818</issn><eissn>1314-3530</eissn><abstract>Vegetative biomass contains a large number of macromolecular substances such as cellulose and hemicellulose, which can be used by microorganisms to produce biofuels and other chemical byproducts. In this study, a filamentous fungus with high β-glucosidase activity was isolated from mangrove soil in Hainan Province, China. Through morphological identification and internal transcribed spacer (ITS) sequence analysis, the strain was identified as Trichoderma reesei. Fermentation conditions were optimized with the response surface method to improve β-glucosidase activity. Inoculum, pH and liquid volume in flask were found to be the key factors. We further examined the optimal range of the three factors using steepest ascent path, and optimum conditions were further investigated according to a Box-Behnken design. We calculated the optimized fermentation conditions to be: carbon source (microcrystalline cellulose (MCC)) 1%, nitrogen source (yeast extract) 0.5%, pH 3.68, inoculum of 3.22 × 10
5
cfu/mL, temperature 28 °C, shaking speed of 160 rpm, and liquid volume in flask of 84.74 mL/250 mL. These conditions increased the β-glucosidase activity 6-fold to 1.13 U/mL compared to that before optimization. The resulting β-glucosidase had an optimum pH of 5.0 and an optimum temperature of 45 °C, and showed high thermal stability at 30-60 °C.</abstract><cop>Sofia</cop><pub>Taylor & Francis</pub><doi>10.1080/13102818.2021.1984989</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1310-2818 |
ispartof | Biotechnology, biotechnological equipment, 2021-01, Vol.35 (1), p.1838-1849 |
issn | 1310-2818 1314-3530 |
language | eng |
recordid | cdi_proquest_journals_2691153430 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biofuels Carbon sources Cellulose Crystalline cellulose Design optimization Fermentation Fungi Glucosidase Hemicellulose Inoculum Macromolecules mangrove Microorganisms pH effects Response surface methodology response surface methodology (RSM) Sequence analysis Shaking Soils Thermal stability Trichoderma reesei Yeasts β-Glucosidase |
title | Optimization of fermentation conditions for the production of acidophilic β-glucosidase by Trichoderma reesei S12 from mangrove soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20fermentation%20conditions%20for%20the%20production%20of%20acidophilic%20%CE%B2-glucosidase%20by%20Trichoderma%20reesei%20S12%20from%20mangrove%20soil&rft.jtitle=Biotechnology,%20biotechnological%20equipment&rft.au=Sun,%20Nan&rft.date=2021-01-01&rft.volume=35&rft.issue=1&rft.spage=1838&rft.epage=1849&rft.pages=1838-1849&rft.issn=1310-2818&rft.eissn=1314-3530&rft_id=info:doi/10.1080/13102818.2021.1984989&rft_dat=%3Cproquest_infor%3E2691153430%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691153430&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9ae11bfa32ba400bb28bc78580f28f17&rfr_iscdi=true |