Large dimensional portfolio allocation based on a mixed frequency dynamic factor model
In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor qua...
Gespeichert in:
Veröffentlicht in: | Econometric reviews 2022, Vol.41 (5), p.539-563 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 563 |
---|---|
container_issue | 5 |
container_start_page | 539 |
container_title | Econometric reviews |
container_volume | 41 |
creator | Peng, Siyang Guo, Shaojun Long, Yonghong |
description | In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance. |
doi_str_mv | 10.1080/07474938.2021.1983327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2691143114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691143114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fcb8c57826f9fab82ad4e4654b57a4d7277a1a3e2da5e21c6d30fcbb16d2a8da3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-BCHguWteTdObsviCBS_qNUzzkCxtsyZdtN_ellW8eRhmGP6_efwRuqRkRYki16QSlai5WjHC6IrWinNWHaEFLTkrBJXqGC1mTTGLTtFZzltCiJKML9DbBtK7wzZ0rs8h9tDiXUyDj22IGNo2GhimNm4gO4unAnAXvqbSJ_exd70ZsR176ILBHswQE-6ide05OvHQZnfxk5fo9f7uZf1YbJ4fnta3m8JwIYbCm0aZslJM-tpDoxhY4YQsRVNWIGzFqgoocMcslI5RIy0nE9NQaRkoC3yJrg5zdylO5-RBb-M-TV9kzWRNqeBzLFF5UJkUc07O610KHaRRU6JnC_WvhXq2UP9YOHH4wDkT-5D_KEWlrEXN5tE3B0nofUwdfMbUWj3A2MbkE_Rmwvj_W74B32WDyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691143114</pqid></control><display><type>article</type><title>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</title><source>Business Source Complete</source><creator>Peng, Siyang ; Guo, Shaojun ; Long, Yonghong</creator><creatorcontrib>Peng, Siyang ; Guo, Shaojun ; Long, Yonghong</creatorcontrib><description>In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance.</description><identifier>ISSN: 0747-4938</identifier><identifier>EISSN: 1532-4168</identifier><identifier>DOI: 10.1080/07474938.2021.1983327</identifier><language>eng</language><publisher>New York: Taylor & Francis</publisher><subject>Covariance matrix ; Dynamic structure ; Econometrics ; Frequency variation ; high frequency regression ; Markowitz's portfolio allocation ; mixed-frequency factor models ; Portfolios ; volatility forecasting</subject><ispartof>Econometric reviews, 2022, Vol.41 (5), p.539-563</ispartof><rights>2022 Taylor & Francis Group, LLC 2022</rights><rights>2022 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-fcb8c57826f9fab82ad4e4654b57a4d7277a1a3e2da5e21c6d30fcbb16d2a8da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Siyang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Long, Yonghong</creatorcontrib><title>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</title><title>Econometric reviews</title><description>In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance.</description><subject>Covariance matrix</subject><subject>Dynamic structure</subject><subject>Econometrics</subject><subject>Frequency variation</subject><subject>high frequency regression</subject><subject>Markowitz's portfolio allocation</subject><subject>mixed-frequency factor models</subject><subject>Portfolios</subject><subject>volatility forecasting</subject><issn>0747-4938</issn><issn>1532-4168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-BCHguWteTdObsviCBS_qNUzzkCxtsyZdtN_ellW8eRhmGP6_efwRuqRkRYki16QSlai5WjHC6IrWinNWHaEFLTkrBJXqGC1mTTGLTtFZzltCiJKML9DbBtK7wzZ0rs8h9tDiXUyDj22IGNo2GhimNm4gO4unAnAXvqbSJ_exd70ZsR176ILBHswQE-6ide05OvHQZnfxk5fo9f7uZf1YbJ4fnta3m8JwIYbCm0aZslJM-tpDoxhY4YQsRVNWIGzFqgoocMcslI5RIy0nE9NQaRkoC3yJrg5zdylO5-RBb-M-TV9kzWRNqeBzLFF5UJkUc07O610KHaRRU6JnC_WvhXq2UP9YOHH4wDkT-5D_KEWlrEXN5tE3B0nofUwdfMbUWj3A2MbkE_Rmwvj_W74B32WDyw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Peng, Siyang</creator><creator>Guo, Shaojun</creator><creator>Long, Yonghong</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2022</creationdate><title>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</title><author>Peng, Siyang ; Guo, Shaojun ; Long, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fcb8c57826f9fab82ad4e4654b57a4d7277a1a3e2da5e21c6d30fcbb16d2a8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Covariance matrix</topic><topic>Dynamic structure</topic><topic>Econometrics</topic><topic>Frequency variation</topic><topic>high frequency regression</topic><topic>Markowitz's portfolio allocation</topic><topic>mixed-frequency factor models</topic><topic>Portfolios</topic><topic>volatility forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Siyang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Long, Yonghong</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Econometric reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Siyang</au><au>Guo, Shaojun</au><au>Long, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</atitle><jtitle>Econometric reviews</jtitle><date>2022</date><risdate>2022</risdate><volume>41</volume><issue>5</issue><spage>539</spage><epage>563</epage><pages>539-563</pages><issn>0747-4938</issn><eissn>1532-4168</eissn><abstract>In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance.</abstract><cop>New York</cop><pub>Taylor & Francis</pub><doi>10.1080/07474938.2021.1983327</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0747-4938 |
ispartof | Econometric reviews, 2022, Vol.41 (5), p.539-563 |
issn | 0747-4938 1532-4168 |
language | eng |
recordid | cdi_proquest_journals_2691143114 |
source | Business Source Complete |
subjects | Covariance matrix Dynamic structure Econometrics Frequency variation high frequency regression Markowitz's portfolio allocation mixed-frequency factor models Portfolios volatility forecasting |
title | Large dimensional portfolio allocation based on a mixed frequency dynamic factor model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20dimensional%20portfolio%20allocation%20based%20on%20a%20mixed%20frequency%20dynamic%20factor%20model&rft.jtitle=Econometric%20reviews&rft.au=Peng,%20Siyang&rft.date=2022&rft.volume=41&rft.issue=5&rft.spage=539&rft.epage=563&rft.pages=539-563&rft.issn=0747-4938&rft.eissn=1532-4168&rft_id=info:doi/10.1080/07474938.2021.1983327&rft_dat=%3Cproquest_infor%3E2691143114%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691143114&rft_id=info:pmid/&rfr_iscdi=true |