Large dimensional portfolio allocation based on a mixed frequency dynamic factor model

In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2022, Vol.41 (5), p.539-563
Hauptverfasser: Peng, Siyang, Guo, Shaojun, Long, Yonghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue 5
container_start_page 539
container_title Econometric reviews
container_volume 41
creator Peng, Siyang
Guo, Shaojun
Long, Yonghong
description In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance.
doi_str_mv 10.1080/07474938.2021.1983327
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2691143114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691143114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fcb8c57826f9fab82ad4e4654b57a4d7277a1a3e2da5e21c6d30fcbb16d2a8da3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-BCHguWteTdObsviCBS_qNUzzkCxtsyZdtN_ellW8eRhmGP6_efwRuqRkRYki16QSlai5WjHC6IrWinNWHaEFLTkrBJXqGC1mTTGLTtFZzltCiJKML9DbBtK7wzZ0rs8h9tDiXUyDj22IGNo2GhimNm4gO4unAnAXvqbSJ_exd70ZsR176ILBHswQE-6ide05OvHQZnfxk5fo9f7uZf1YbJ4fnta3m8JwIYbCm0aZslJM-tpDoxhY4YQsRVNWIGzFqgoocMcslI5RIy0nE9NQaRkoC3yJrg5zdylO5-RBb-M-TV9kzWRNqeBzLFF5UJkUc07O610KHaRRU6JnC_WvhXq2UP9YOHH4wDkT-5D_KEWlrEXN5tE3B0nofUwdfMbUWj3A2MbkE_Rmwvj_W74B32WDyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691143114</pqid></control><display><type>article</type><title>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</title><source>Business Source Complete</source><creator>Peng, Siyang ; Guo, Shaojun ; Long, Yonghong</creator><creatorcontrib>Peng, Siyang ; Guo, Shaojun ; Long, Yonghong</creatorcontrib><description>In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance.</description><identifier>ISSN: 0747-4938</identifier><identifier>EISSN: 1532-4168</identifier><identifier>DOI: 10.1080/07474938.2021.1983327</identifier><language>eng</language><publisher>New York: Taylor &amp; Francis</publisher><subject>Covariance matrix ; Dynamic structure ; Econometrics ; Frequency variation ; high frequency regression ; Markowitz's portfolio allocation ; mixed-frequency factor models ; Portfolios ; volatility forecasting</subject><ispartof>Econometric reviews, 2022, Vol.41 (5), p.539-563</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-fcb8c57826f9fab82ad4e4654b57a4d7277a1a3e2da5e21c6d30fcbb16d2a8da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Siyang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Long, Yonghong</creatorcontrib><title>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</title><title>Econometric reviews</title><description>In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance.</description><subject>Covariance matrix</subject><subject>Dynamic structure</subject><subject>Econometrics</subject><subject>Frequency variation</subject><subject>high frequency regression</subject><subject>Markowitz's portfolio allocation</subject><subject>mixed-frequency factor models</subject><subject>Portfolios</subject><subject>volatility forecasting</subject><issn>0747-4938</issn><issn>1532-4168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-BCHguWteTdObsviCBS_qNUzzkCxtsyZdtN_ellW8eRhmGP6_efwRuqRkRYki16QSlai5WjHC6IrWinNWHaEFLTkrBJXqGC1mTTGLTtFZzltCiJKML9DbBtK7wzZ0rs8h9tDiXUyDj22IGNo2GhimNm4gO4unAnAXvqbSJ_exd70ZsR176ILBHswQE-6ide05OvHQZnfxk5fo9f7uZf1YbJ4fnta3m8JwIYbCm0aZslJM-tpDoxhY4YQsRVNWIGzFqgoocMcslI5RIy0nE9NQaRkoC3yJrg5zdylO5-RBb-M-TV9kzWRNqeBzLFF5UJkUc07O610KHaRRU6JnC_WvhXq2UP9YOHH4wDkT-5D_KEWlrEXN5tE3B0nofUwdfMbUWj3A2MbkE_Rmwvj_W74B32WDyw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Peng, Siyang</creator><creator>Guo, Shaojun</creator><creator>Long, Yonghong</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2022</creationdate><title>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</title><author>Peng, Siyang ; Guo, Shaojun ; Long, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fcb8c57826f9fab82ad4e4654b57a4d7277a1a3e2da5e21c6d30fcbb16d2a8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Covariance matrix</topic><topic>Dynamic structure</topic><topic>Econometrics</topic><topic>Frequency variation</topic><topic>high frequency regression</topic><topic>Markowitz's portfolio allocation</topic><topic>mixed-frequency factor models</topic><topic>Portfolios</topic><topic>volatility forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Siyang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Long, Yonghong</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Econometric reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Siyang</au><au>Guo, Shaojun</au><au>Long, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large dimensional portfolio allocation based on a mixed frequency dynamic factor model</atitle><jtitle>Econometric reviews</jtitle><date>2022</date><risdate>2022</risdate><volume>41</volume><issue>5</issue><spage>539</spage><epage>563</epage><pages>539-563</pages><issn>0747-4938</issn><eissn>1532-4168</eissn><abstract>In this paper, we propose a mixed-frequency dynamic factor model (MFDFM) taking into account the high-frequency variation and low-frequency variation at the same time. The factor loadings in our model are affected by the past quadratic variation of factor returns, while the process of the factor quadratic variation is under a mixed-frequency framework (DCC-RV). By combing the variations from the high-frequency and low-frequency domain, our approach exhibits a better estimation and forecast of the assets covariance matrix. Our empirical study compares our MFDFM model with the sample realized covariance matrix and the traditional factor model with intraday returns or daily returns. The results of the empirical study indicate that our proposed model indeed outperforms other models in the sense that the Markowitz's portfolios based on the MFDFM have a better performance.</abstract><cop>New York</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07474938.2021.1983327</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0747-4938
ispartof Econometric reviews, 2022, Vol.41 (5), p.539-563
issn 0747-4938
1532-4168
language eng
recordid cdi_proquest_journals_2691143114
source Business Source Complete
subjects Covariance matrix
Dynamic structure
Econometrics
Frequency variation
high frequency regression
Markowitz's portfolio allocation
mixed-frequency factor models
Portfolios
volatility forecasting
title Large dimensional portfolio allocation based on a mixed frequency dynamic factor model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20dimensional%20portfolio%20allocation%20based%20on%20a%20mixed%20frequency%20dynamic%20factor%20model&rft.jtitle=Econometric%20reviews&rft.au=Peng,%20Siyang&rft.date=2022&rft.volume=41&rft.issue=5&rft.spage=539&rft.epage=563&rft.pages=539-563&rft.issn=0747-4938&rft.eissn=1532-4168&rft_id=info:doi/10.1080/07474938.2021.1983327&rft_dat=%3Cproquest_infor%3E2691143114%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691143114&rft_id=info:pmid/&rfr_iscdi=true