Thermal and flow characteristics in a vertical spiral-type ground heat exchanger based on linear non-equilibrium thermodynamic principle

The thermal and flow performances in a single spiral-type ground heat exchanger in one-week operation were numerically simulated by considering the coupled thermal and moisture migration model for backfill and soil fields. The main factors involved Reynolds number (3000–10000), inlet temperature (30...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2022-07, Vol.266, p.112111, Article 112111
Hauptverfasser: Liang, Bin, Chen, Meiqian, An Fu, Bi, Guan, Junli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112111
container_title Energy and buildings
container_volume 266
creator Liang, Bin
Chen, Meiqian
An Fu, Bi
Guan, Junli
description The thermal and flow performances in a single spiral-type ground heat exchanger in one-week operation were numerically simulated by considering the coupled thermal and moisture migration model for backfill and soil fields. The main factors involved Reynolds number (3000–10000), inlet temperature (30–40 °C), initial volumetric moisture content (6.95–20.8%), backfill materials (native sand, and sand/kaolin blend with 5% adding ratio of kaolin), spiral diameters (0.4–0.8 m), spiral pitches (0.1–0.8 m) and operation modes. The thermal performance of the heat exchanger without considering the coupled thermal and moisture migration model in unsaturated soil could be overestimated in long-term operation. The average temperatures in the blend enhanced by about 2% compared with the sand field, but the change degrees for the moisture content in the blend field were about 33% lower than that in the sand field, which imply that the kaolin additive could simultaneously enhance the thermal migration and water-holding capacity of the sand. The heat transfer rate of the heat exchanger in the blend enhanced by 24–36% with widening the spiral diameter from 0.4 to 0.8 m or narrowing the spiral pitch from 0.8 to 0.1 m, while the pressure drop rose by 50–92% and 4–5 times, respectively. 3-h-on/3-h-off mode among three intermittent operation modes (12-h-on/12-h-off, 6-h-on/6-h-off and 3-h-on/3-h-off) for the blend was more effective one to urge the soil temperature restoration. The intermittent operation mode should be also a feasible technique for prompting the thermal performance of the ground heat exchanger.
doi_str_mv 10.1016/j.enbuild.2022.112111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691095922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778822002821</els_id><sourcerecordid>2691095922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-85bc9ec5d018dfec2a92151d3d500496212867687d27079ce0f7c3a88ba9bf473</originalsourceid><addsrcrecordid>eNqFkM1KJDEQx8OisOPoIywEPPdsKmN30qdFxI8FwYueQzqpdjL0JG2lW5032MfeDOPdU1Hw_6j6MfYLxAoENL-3K4zdHAa_kkLKFYAEgB9sAVrJqgGlT9hCrJWulNL6JzvLeSuEaGoFC_bveYO0swO30fN-SB_cbSxZNyGFPAWXeYjc8nekshRZHgPZoZr2I_JXSnNxbdBOHD-LL74i8c5m9DxFPoSIlnhMscK3cl7oKMw7Ph0Kk99HuwuOjxSiC-OA5-y0t0PGi6-5ZC93t883D9Xj0_3fm-vHyslGTZWuO9eiq70A7Xt00rYSavBrXwtx1TYSpG5Uo5WXSqjWoeiVW1utO9t2_ZVaL9nlMXek9DZjnsw2zRRLpZFNC6KtWymLqj6qHKWcCXtTDt1Z2hsQ5gDdbM0XdHOAbo7Qi-_P0YflhfeAZLILGB36QOgm41P4JuE_OKWQBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691095922</pqid></control><display><type>article</type><title>Thermal and flow characteristics in a vertical spiral-type ground heat exchanger based on linear non-equilibrium thermodynamic principle</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liang, Bin ; Chen, Meiqian ; An Fu, Bi ; Guan, Junli</creator><creatorcontrib>Liang, Bin ; Chen, Meiqian ; An Fu, Bi ; Guan, Junli</creatorcontrib><description>The thermal and flow performances in a single spiral-type ground heat exchanger in one-week operation were numerically simulated by considering the coupled thermal and moisture migration model for backfill and soil fields. The main factors involved Reynolds number (3000–10000), inlet temperature (30–40 °C), initial volumetric moisture content (6.95–20.8%), backfill materials (native sand, and sand/kaolin blend with 5% adding ratio of kaolin), spiral diameters (0.4–0.8 m), spiral pitches (0.1–0.8 m) and operation modes. The thermal performance of the heat exchanger without considering the coupled thermal and moisture migration model in unsaturated soil could be overestimated in long-term operation. The average temperatures in the blend enhanced by about 2% compared with the sand field, but the change degrees for the moisture content in the blend field were about 33% lower than that in the sand field, which imply that the kaolin additive could simultaneously enhance the thermal migration and water-holding capacity of the sand. The heat transfer rate of the heat exchanger in the blend enhanced by 24–36% with widening the spiral diameter from 0.4 to 0.8 m or narrowing the spiral pitch from 0.8 to 0.1 m, while the pressure drop rose by 50–92% and 4–5 times, respectively. 3-h-on/3-h-off mode among three intermittent operation modes (12-h-on/12-h-off, 6-h-on/6-h-off and 3-h-on/3-h-off) for the blend was more effective one to urge the soil temperature restoration. The intermittent operation mode should be also a feasible technique for prompting the thermal performance of the ground heat exchanger.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2022.112111</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Backfill ; Flow characteristics ; Fluid flow ; Heat exchangers ; Heat transfer ; Inlet temperature ; Intermittent operation mode ; Kaolin ; Moisture content ; Moisture effects ; Nonequilibrium thermodynamics ; Pressure drop ; Reynolds number ; Sand ; Soil moisture ; Soil temperature ; Spiral-type ground heat exchanger ; Thermal and moisture migration model ; Thermodynamic equilibrium ; Unsaturated soils ; Water content</subject><ispartof>Energy and buildings, 2022-07, Vol.266, p.112111, Article 112111</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-85bc9ec5d018dfec2a92151d3d500496212867687d27079ce0f7c3a88ba9bf473</citedby><cites>FETCH-LOGICAL-c267t-85bc9ec5d018dfec2a92151d3d500496212867687d27079ce0f7c3a88ba9bf473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2022.112111$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Chen, Meiqian</creatorcontrib><creatorcontrib>An Fu, Bi</creatorcontrib><creatorcontrib>Guan, Junli</creatorcontrib><title>Thermal and flow characteristics in a vertical spiral-type ground heat exchanger based on linear non-equilibrium thermodynamic principle</title><title>Energy and buildings</title><description>The thermal and flow performances in a single spiral-type ground heat exchanger in one-week operation were numerically simulated by considering the coupled thermal and moisture migration model for backfill and soil fields. The main factors involved Reynolds number (3000–10000), inlet temperature (30–40 °C), initial volumetric moisture content (6.95–20.8%), backfill materials (native sand, and sand/kaolin blend with 5% adding ratio of kaolin), spiral diameters (0.4–0.8 m), spiral pitches (0.1–0.8 m) and operation modes. The thermal performance of the heat exchanger without considering the coupled thermal and moisture migration model in unsaturated soil could be overestimated in long-term operation. The average temperatures in the blend enhanced by about 2% compared with the sand field, but the change degrees for the moisture content in the blend field were about 33% lower than that in the sand field, which imply that the kaolin additive could simultaneously enhance the thermal migration and water-holding capacity of the sand. The heat transfer rate of the heat exchanger in the blend enhanced by 24–36% with widening the spiral diameter from 0.4 to 0.8 m or narrowing the spiral pitch from 0.8 to 0.1 m, while the pressure drop rose by 50–92% and 4–5 times, respectively. 3-h-on/3-h-off mode among three intermittent operation modes (12-h-on/12-h-off, 6-h-on/6-h-off and 3-h-on/3-h-off) for the blend was more effective one to urge the soil temperature restoration. The intermittent operation mode should be also a feasible technique for prompting the thermal performance of the ground heat exchanger.</description><subject>Backfill</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Inlet temperature</subject><subject>Intermittent operation mode</subject><subject>Kaolin</subject><subject>Moisture content</subject><subject>Moisture effects</subject><subject>Nonequilibrium thermodynamics</subject><subject>Pressure drop</subject><subject>Reynolds number</subject><subject>Sand</subject><subject>Soil moisture</subject><subject>Soil temperature</subject><subject>Spiral-type ground heat exchanger</subject><subject>Thermal and moisture migration model</subject><subject>Thermodynamic equilibrium</subject><subject>Unsaturated soils</subject><subject>Water content</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KJDEQx8OisOPoIywEPPdsKmN30qdFxI8FwYueQzqpdjL0JG2lW5032MfeDOPdU1Hw_6j6MfYLxAoENL-3K4zdHAa_kkLKFYAEgB9sAVrJqgGlT9hCrJWulNL6JzvLeSuEaGoFC_bveYO0swO30fN-SB_cbSxZNyGFPAWXeYjc8nekshRZHgPZoZr2I_JXSnNxbdBOHD-LL74i8c5m9DxFPoSIlnhMscK3cl7oKMw7Ph0Kk99HuwuOjxSiC-OA5-y0t0PGi6-5ZC93t883D9Xj0_3fm-vHyslGTZWuO9eiq70A7Xt00rYSavBrXwtx1TYSpG5Uo5WXSqjWoeiVW1utO9t2_ZVaL9nlMXek9DZjnsw2zRRLpZFNC6KtWymLqj6qHKWcCXtTDt1Z2hsQ5gDdbM0XdHOAbo7Qi-_P0YflhfeAZLILGB36QOgm41P4JuE_OKWQBw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Liang, Bin</creator><creator>Chen, Meiqian</creator><creator>An Fu, Bi</creator><creator>Guan, Junli</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20220701</creationdate><title>Thermal and flow characteristics in a vertical spiral-type ground heat exchanger based on linear non-equilibrium thermodynamic principle</title><author>Liang, Bin ; Chen, Meiqian ; An Fu, Bi ; Guan, Junli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-85bc9ec5d018dfec2a92151d3d500496212867687d27079ce0f7c3a88ba9bf473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Backfill</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Inlet temperature</topic><topic>Intermittent operation mode</topic><topic>Kaolin</topic><topic>Moisture content</topic><topic>Moisture effects</topic><topic>Nonequilibrium thermodynamics</topic><topic>Pressure drop</topic><topic>Reynolds number</topic><topic>Sand</topic><topic>Soil moisture</topic><topic>Soil temperature</topic><topic>Spiral-type ground heat exchanger</topic><topic>Thermal and moisture migration model</topic><topic>Thermodynamic equilibrium</topic><topic>Unsaturated soils</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Chen, Meiqian</creatorcontrib><creatorcontrib>An Fu, Bi</creatorcontrib><creatorcontrib>Guan, Junli</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Bin</au><au>Chen, Meiqian</au><au>An Fu, Bi</au><au>Guan, Junli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and flow characteristics in a vertical spiral-type ground heat exchanger based on linear non-equilibrium thermodynamic principle</atitle><jtitle>Energy and buildings</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>266</volume><spage>112111</spage><pages>112111-</pages><artnum>112111</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>The thermal and flow performances in a single spiral-type ground heat exchanger in one-week operation were numerically simulated by considering the coupled thermal and moisture migration model for backfill and soil fields. The main factors involved Reynolds number (3000–10000), inlet temperature (30–40 °C), initial volumetric moisture content (6.95–20.8%), backfill materials (native sand, and sand/kaolin blend with 5% adding ratio of kaolin), spiral diameters (0.4–0.8 m), spiral pitches (0.1–0.8 m) and operation modes. The thermal performance of the heat exchanger without considering the coupled thermal and moisture migration model in unsaturated soil could be overestimated in long-term operation. The average temperatures in the blend enhanced by about 2% compared with the sand field, but the change degrees for the moisture content in the blend field were about 33% lower than that in the sand field, which imply that the kaolin additive could simultaneously enhance the thermal migration and water-holding capacity of the sand. The heat transfer rate of the heat exchanger in the blend enhanced by 24–36% with widening the spiral diameter from 0.4 to 0.8 m or narrowing the spiral pitch from 0.8 to 0.1 m, while the pressure drop rose by 50–92% and 4–5 times, respectively. 3-h-on/3-h-off mode among three intermittent operation modes (12-h-on/12-h-off, 6-h-on/6-h-off and 3-h-on/3-h-off) for the blend was more effective one to urge the soil temperature restoration. The intermittent operation mode should be also a feasible technique for prompting the thermal performance of the ground heat exchanger.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2022.112111</doi></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2022-07, Vol.266, p.112111, Article 112111
issn 0378-7788
1872-6178
language eng
recordid cdi_proquest_journals_2691095922
source Elsevier ScienceDirect Journals Complete
subjects Backfill
Flow characteristics
Fluid flow
Heat exchangers
Heat transfer
Inlet temperature
Intermittent operation mode
Kaolin
Moisture content
Moisture effects
Nonequilibrium thermodynamics
Pressure drop
Reynolds number
Sand
Soil moisture
Soil temperature
Spiral-type ground heat exchanger
Thermal and moisture migration model
Thermodynamic equilibrium
Unsaturated soils
Water content
title Thermal and flow characteristics in a vertical spiral-type ground heat exchanger based on linear non-equilibrium thermodynamic principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20flow%20characteristics%20in%20a%20vertical%20spiral-type%20ground%20heat%20exchanger%20based%20on%20linear%20non-equilibrium%20thermodynamic%20principle&rft.jtitle=Energy%20and%20buildings&rft.au=Liang,%20Bin&rft.date=2022-07-01&rft.volume=266&rft.spage=112111&rft.pages=112111-&rft.artnum=112111&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2022.112111&rft_dat=%3Cproquest_cross%3E2691095922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691095922&rft_id=info:pmid/&rft_els_id=S0378778822002821&rfr_iscdi=true