A computationally efficient approach to estimating species richness and rarefaction curve
In ecological and educational studies, estimators of the total number of species and rarefaction curve based on empirical samples are important tools. We propose a new method to estimate both rarefaction curve and the number of species based on a ready-made numerical approach such as quadratic optim...
Gespeichert in:
Veröffentlicht in: | Computational statistics 2022-09, Vol.37 (4), p.1919-1941 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1941 |
---|---|
container_issue | 4 |
container_start_page | 1919 |
container_title | Computational statistics |
container_volume | 37 |
creator | Baek, Seungchul Park, Junyong |
description | In ecological and educational studies, estimators of the total number of species and rarefaction curve based on empirical samples are important tools. We propose a new method to estimate both rarefaction curve and the number of species based on a ready-made numerical approach such as quadratic optimization. The key idea in developing the proposed algorithm is based on nonparametric empirical Bayes estimation incorporating an interpolated rarefaction curve through quadratic optimization with linear constraints based on
g
-modeling in Efron (Stat Sci 29:285–301, 2014). Our proposed algorithm is easily implemented and shows better performances than existing methods in terms of computational speed and accuracy. Furthermore, we provide a criterion of model selection to choose some tuning parameters in estimation procedure and the idea of confidence interval based on asymptotic theory rather than resampling method. We present some asymptotic result of our estimator to validate the efficiency of our estimator theoretically. A broad range of numerical studies including simulations and real data examples are also conducted, and the gain that it produces has been compared to existing methods. |
doi_str_mv | 10.1007/s00180-021-01185-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2690865918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690865918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-45f6d4a133e946e603ab14ac894be15781067fcaf37b817478a0662a695c1e8b3</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwBZgsMRvesx3HHquKf1IlFhiYLMd12lRtEuwEqd8eQ5DYmN7w7k53P0KuEW4RoLxLAKiBAUcGiLpgeEJmqFAwowp9SmZgpGASFD8nFyntADgvOc7I-4L67tCPgxuarnX7_ZGGum58E9qBur6PnfNbOnQ0pKE5ZFG7oakP-Z9obPy2DSlR165pdDHUzn-nUD_Gz3BJzmq3T-Hq987J28P96_KJrV4en5eLFfMCzcBkUau1dChEMFIFBcJVKJ3XRlYBi1IjqLL2rhZlpbGUpXagFHfKFB6DrsSc3Ey5uevHmGvaXTfGPCVZrgxoVRjUWcUnlY9dSrmq7WPeE48WwX4jtBNCmxHaH4QWs0lMppTF7SbEv-h_XF9iC3Rx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690865918</pqid></control><display><type>article</type><title>A computationally efficient approach to estimating species richness and rarefaction curve</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baek, Seungchul ; Park, Junyong</creator><creatorcontrib>Baek, Seungchul ; Park, Junyong</creatorcontrib><description>In ecological and educational studies, estimators of the total number of species and rarefaction curve based on empirical samples are important tools. We propose a new method to estimate both rarefaction curve and the number of species based on a ready-made numerical approach such as quadratic optimization. The key idea in developing the proposed algorithm is based on nonparametric empirical Bayes estimation incorporating an interpolated rarefaction curve through quadratic optimization with linear constraints based on
g
-modeling in Efron (Stat Sci 29:285–301, 2014). Our proposed algorithm is easily implemented and shows better performances than existing methods in terms of computational speed and accuracy. Furthermore, we provide a criterion of model selection to choose some tuning parameters in estimation procedure and the idea of confidence interval based on asymptotic theory rather than resampling method. We present some asymptotic result of our estimator to validate the efficiency of our estimator theoretically. A broad range of numerical studies including simulations and real data examples are also conducted, and the gain that it produces has been compared to existing methods.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-021-01185-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Asymptotic methods ; Asymptotic properties ; Confidence intervals ; Constraint modelling ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Nonparametric statistics ; Numerical analysis ; Optimization ; Original Paper ; Parameter estimation ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Rarefaction ; Resampling ; Statistics</subject><ispartof>Computational statistics, 2022-09, Vol.37 (4), p.1919-1941</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-45f6d4a133e946e603ab14ac894be15781067fcaf37b817478a0662a695c1e8b3</citedby><cites>FETCH-LOGICAL-c319t-45f6d4a133e946e603ab14ac894be15781067fcaf37b817478a0662a695c1e8b3</cites><orcidid>0000-0001-9583-390X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-021-01185-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-021-01185-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baek, Seungchul</creatorcontrib><creatorcontrib>Park, Junyong</creatorcontrib><title>A computationally efficient approach to estimating species richness and rarefaction curve</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>In ecological and educational studies, estimators of the total number of species and rarefaction curve based on empirical samples are important tools. We propose a new method to estimate both rarefaction curve and the number of species based on a ready-made numerical approach such as quadratic optimization. The key idea in developing the proposed algorithm is based on nonparametric empirical Bayes estimation incorporating an interpolated rarefaction curve through quadratic optimization with linear constraints based on
g
-modeling in Efron (Stat Sci 29:285–301, 2014). Our proposed algorithm is easily implemented and shows better performances than existing methods in terms of computational speed and accuracy. Furthermore, we provide a criterion of model selection to choose some tuning parameters in estimation procedure and the idea of confidence interval based on asymptotic theory rather than resampling method. We present some asymptotic result of our estimator to validate the efficiency of our estimator theoretically. A broad range of numerical studies including simulations and real data examples are also conducted, and the gain that it produces has been compared to existing methods.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Confidence intervals</subject><subject>Constraint modelling</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Rarefaction</subject><subject>Resampling</subject><subject>Statistics</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD9PwzAUxC0EEqXwBZgsMRvesx3HHquKf1IlFhiYLMd12lRtEuwEqd8eQ5DYmN7w7k53P0KuEW4RoLxLAKiBAUcGiLpgeEJmqFAwowp9SmZgpGASFD8nFyntADgvOc7I-4L67tCPgxuarnX7_ZGGum58E9qBur6PnfNbOnQ0pKE5ZFG7oakP-Z9obPy2DSlR165pdDHUzn-nUD_Gz3BJzmq3T-Hq987J28P96_KJrV4en5eLFfMCzcBkUau1dChEMFIFBcJVKJ3XRlYBi1IjqLL2rhZlpbGUpXagFHfKFB6DrsSc3Ey5uevHmGvaXTfGPCVZrgxoVRjUWcUnlY9dSrmq7WPeE48WwX4jtBNCmxHaH4QWs0lMppTF7SbEv-h_XF9iC3Rx</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Baek, Seungchul</creator><creator>Park, Junyong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9583-390X</orcidid></search><sort><creationdate>20220901</creationdate><title>A computationally efficient approach to estimating species richness and rarefaction curve</title><author>Baek, Seungchul ; Park, Junyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-45f6d4a133e946e603ab14ac894be15781067fcaf37b817478a0662a695c1e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Confidence intervals</topic><topic>Constraint modelling</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Rarefaction</topic><topic>Resampling</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Seungchul</creatorcontrib><creatorcontrib>Park, Junyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Seungchul</au><au>Park, Junyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computationally efficient approach to estimating species richness and rarefaction curve</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>1919</spage><epage>1941</epage><pages>1919-1941</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>In ecological and educational studies, estimators of the total number of species and rarefaction curve based on empirical samples are important tools. We propose a new method to estimate both rarefaction curve and the number of species based on a ready-made numerical approach such as quadratic optimization. The key idea in developing the proposed algorithm is based on nonparametric empirical Bayes estimation incorporating an interpolated rarefaction curve through quadratic optimization with linear constraints based on
g
-modeling in Efron (Stat Sci 29:285–301, 2014). Our proposed algorithm is easily implemented and shows better performances than existing methods in terms of computational speed and accuracy. Furthermore, we provide a criterion of model selection to choose some tuning parameters in estimation procedure and the idea of confidence interval based on asymptotic theory rather than resampling method. We present some asymptotic result of our estimator to validate the efficiency of our estimator theoretically. A broad range of numerical studies including simulations and real data examples are also conducted, and the gain that it produces has been compared to existing methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-021-01185-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9583-390X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0943-4062 |
ispartof | Computational statistics, 2022-09, Vol.37 (4), p.1919-1941 |
issn | 0943-4062 1613-9658 |
language | eng |
recordid | cdi_proquest_journals_2690865918 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Asymptotic methods Asymptotic properties Confidence intervals Constraint modelling Economic Theory/Quantitative Economics/Mathematical Methods Mathematics and Statistics Nonparametric statistics Numerical analysis Optimization Original Paper Parameter estimation Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Rarefaction Resampling Statistics |
title | A computationally efficient approach to estimating species richness and rarefaction curve |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computationally%20efficient%20approach%20to%20estimating%20species%20richness%20and%20rarefaction%20curve&rft.jtitle=Computational%20statistics&rft.au=Baek,%20Seungchul&rft.date=2022-09-01&rft.volume=37&rft.issue=4&rft.spage=1919&rft.epage=1941&rft.pages=1919-1941&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-021-01185-1&rft_dat=%3Cproquest_cross%3E2690865918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690865918&rft_id=info:pmid/&rfr_iscdi=true |