The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective
Abstract We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assumin...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2022-08, Vol.83 (4), p.803-824 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 4 |
container_start_page | 803 |
container_title | Journal of global optimization |
container_volume | 83 |
creator | Buchheim, Christoph Henke, Dorothee |
description | Abstract
We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function. |
doi_str_mv | 10.1007/s10898-021-01117-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2690865848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710624741</galeid><sourcerecordid>A710624741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a09da209ab36bdc2de156998045a7ef40ce71af21e78c3b654164dde6ee547bd3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUxgdRsFZfQBACrqc9yWTyZ1mKVqHgpq5DJnPSm9u5yTXJtLjra_h6PompI-hKsjgJfL-T75yv695SOKMA8rxQUFr1wGgPlFLZ62fdCR3l0DNNxfN_7i-7V6XsAUCrkZ10u5sdkpymtVQyhQXvcSEuxRrimtZC7qI9FuvuyLFpFjyQh1B3ZI0Oc7UhNil6H1zAWAtp79q6-bQs6QHzz8cfhaRpj66Ge3zdvfB2KfjmTz3tvn78cHP5qb_-cvX58uK6d5zx2lvQs2Wg7TSIaXZsRjoKrRXw0Ur0HBxKaj2jKJUbJjFyKvg8o0AcuZzm4bR7v_Vtjr-tWKrZpzXH9qVhQoMSo-Kqqc421a1d0IToU83WtTPjIbT50bddmAtJQTAuOW0A2wCXUykZvTnmcLD5u6FgniIwWwSmRWB-R2B0g4YNKk0cbzH_9fJf6t1GYTMSinkqpaZsBlDN_PALAqCWMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690865848</pqid></control><display><type>article</type><title>The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective</title><source>SpringerLink Journals</source><creator>Buchheim, Christoph ; Henke, Dorothee</creator><creatorcontrib>Buchheim, Christoph ; Henke, Dorothee</creatorcontrib><description>Abstract
We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.</description><identifier>ISSN: 1573-2916</identifier><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-021-01117-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bilevel optimization ; Combinatorial analysis ; Computational geometry ; Computer Science ; Convexity ; Interval order ; Knapsack problem ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Polynomials ; Real Functions ; Robust optimization ; Robustness ; Surface hardness ; Uncertainty</subject><ispartof>Journal of global optimization, 2022-08, Vol.83 (4), p.803-824</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a09da209ab36bdc2de156998045a7ef40ce71af21e78c3b654164dde6ee547bd3</citedby><cites>FETCH-LOGICAL-c424t-a09da209ab36bdc2de156998045a7ef40ce71af21e78c3b654164dde6ee547bd3</cites><orcidid>0000-0001-9190-642X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-021-01117-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-021-01117-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Buchheim, Christoph</creatorcontrib><creatorcontrib>Henke, Dorothee</creatorcontrib><title>The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Abstract
We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.</description><subject>Bilevel optimization</subject><subject>Combinatorial analysis</subject><subject>Computational geometry</subject><subject>Computer Science</subject><subject>Convexity</subject><subject>Interval order</subject><subject>Knapsack problem</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Real Functions</subject><subject>Robust optimization</subject><subject>Robustness</subject><subject>Surface hardness</subject><subject>Uncertainty</subject><issn>1573-2916</issn><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc9qFTEUxgdRsFZfQBACrqc9yWTyZ1mKVqHgpq5DJnPSm9u5yTXJtLjra_h6PompI-hKsjgJfL-T75yv695SOKMA8rxQUFr1wGgPlFLZ62fdCR3l0DNNxfN_7i-7V6XsAUCrkZ10u5sdkpymtVQyhQXvcSEuxRrimtZC7qI9FuvuyLFpFjyQh1B3ZI0Oc7UhNil6H1zAWAtp79q6-bQs6QHzz8cfhaRpj66Ge3zdvfB2KfjmTz3tvn78cHP5qb_-cvX58uK6d5zx2lvQs2Wg7TSIaXZsRjoKrRXw0Ur0HBxKaj2jKJUbJjFyKvg8o0AcuZzm4bR7v_Vtjr-tWKrZpzXH9qVhQoMSo-Kqqc421a1d0IToU83WtTPjIbT50bddmAtJQTAuOW0A2wCXUykZvTnmcLD5u6FgniIwWwSmRWB-R2B0g4YNKk0cbzH_9fJf6t1GYTMSinkqpaZsBlDN_PALAqCWMA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Buchheim, Christoph</creator><creator>Henke, Dorothee</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>OT2</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9190-642X</orcidid></search><sort><creationdate>20220801</creationdate><title>The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective</title><author>Buchheim, Christoph ; Henke, Dorothee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a09da209ab36bdc2de156998045a7ef40ce71af21e78c3b654164dde6ee547bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bilevel optimization</topic><topic>Combinatorial analysis</topic><topic>Computational geometry</topic><topic>Computer Science</topic><topic>Convexity</topic><topic>Interval order</topic><topic>Knapsack problem</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Real Functions</topic><topic>Robust optimization</topic><topic>Robustness</topic><topic>Surface hardness</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchheim, Christoph</creatorcontrib><creatorcontrib>Henke, Dorothee</creatorcontrib><collection>EconStor</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchheim, Christoph</au><au>Henke, Dorothee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>83</volume><issue>4</issue><spage>803</spage><epage>824</epage><pages>803-824</pages><issn>1573-2916</issn><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Abstract
We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower’s problem. More precisely, adopting the robust optimization approach and assuming that the follower’s profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower’s reaction from the leader’s perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader’s objective function.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-021-01117-9</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9190-642X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-2916 |
ispartof | Journal of global optimization, 2022-08, Vol.83 (4), p.803-824 |
issn | 1573-2916 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2690865848 |
source | SpringerLink Journals |
subjects | Bilevel optimization Combinatorial analysis Computational geometry Computer Science Convexity Interval order Knapsack problem Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Polynomials Real Functions Robust optimization Robustness Surface hardness Uncertainty |
title | The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20robust%20bilevel%20continuous%20knapsack%20problem%20with%20uncertain%20coefficients%20in%20the%20follower%E2%80%99s%20objective&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Buchheim,%20Christoph&rft.date=2022-08-01&rft.volume=83&rft.issue=4&rft.spage=803&rft.epage=824&rft.pages=803-824&rft.issn=1573-2916&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-021-01117-9&rft_dat=%3Cgale_proqu%3EA710624741%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690865848&rft_id=info:pmid/&rft_galeid=A710624741&rfr_iscdi=true |