Integrated Online Order Picking and Vehicle Routing of Food Cold Chain with Demand Surge

This paper focuses on the effect of demand surge on the food cold chain, where orders arrive online. The demand surge has successively affected the order batching, batch sequencing, and route planning, compared to regular demand. This research studies the integrated optimization of food cold chain o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-07, Vol.2022, p.1-14
Hauptverfasser: Chen, Youhua, Lan, Hongjie, Wang, Chuan, Jia, Xiaoqiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the effect of demand surge on the food cold chain, where orders arrive online. The demand surge has successively affected the order batching, batch sequencing, and route planning, compared to regular demand. This research studies the integrated optimization of food cold chain order picking and vehicle routing of online orders, where mixed integer programming model is formulated to minimize time-consuming and cost. We firstly use K-means++ algorithm to cluster all customers, and then an online batch processing algorithm is designed in each region. Finally, a genetic algorithm is used to complete the joint optimization of the picking and delivery. We use X enterprise’s e-commerce platform as a case to collect actual operating data to verify the effectiveness of the model and algorithm. And comparing the analysis results between phased optimization and integrated optimization, reasonable suggestions are put forward for management decisions.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/4485376