A Trajectory Privacy Protect Method Based on Location Pair Reorganization
With the rapid development of mobile Internet and communication technology, location-based services (LBS) are widely used in our daily life. The server stores a large amount of user location data, and these location data constitute user trajectories. If trajectory information on the server is leaked...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-07, Vol.2022, p.1-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Wu, Wanqing Shang, Wenlong Lei, Ruohe Yang, Xin |
description | With the rapid development of mobile Internet and communication technology, location-based services (LBS) are widely used in our daily life. The server stores a large amount of user location data, and these location data constitute user trajectories. If trajectory information on the server is leaked, it will seriously endanger users’ privacy. Trajectory k-anonymity technology is one of the most important methods to protect the privacy of user trajectory. However, current trajectory k-anonymity methods have less discussion on the semantic of stop point when selecting dummy trajectory, which leads to the fact that attacker can still exclude the dummy trajectory from the k-anonymity set and infer the real trajectory by combining background knowledge with the semantic information of stop points. To address this problem, this paper decomposes the real trajectory into location pairs set; the set consists of start-end points and stop points. According to the similarity of location pairs, the similar location pairs in history trajectory set are used to generate dummy trajectory: firstly, extracting the start-end points and stop points from real trajectory and assigning semantic to them. Then, based on the semantic, temporal, and geographical attributes, eligible location pairs are selected from history trajectory set to construct equivalence class. Finally, according to the location pairs in equivalence class, k−1 dummy trajectories are generated to form a k-anonymity set. We evaluate our method thoroughly with real dataset. The results show that our method achieve an effective data availability and higher privacy protection than other methods. |
doi_str_mv | 10.1155/2022/8635275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2690827472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690827472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5dc77c11bb0b16b959be9da66cfa2d3fe131ce38c9eed7f0edac1ac5e9f81a23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB87f0DApY7No0kmy1p8FCoW6T7cSTI2RSc1mSr11ztji0tX53D4uBc-hC4ouaFUiCEjjA1LyQVT4gANqOCkKKVSh39d6mN0kvOKEMIJowM0HeNFgpW3bUxbPE_hE2yfse0m_OTbZXT4FrJ3ODZ4Fi20oStzCAm_-JheoQnfv9sZOqrhLfvzfZ6ixf3dYvJYzJ4fppPxrLBMj9pCOKuUpbSqSEVlpYWuvHYgpa2BOV57yqn1vLTae6dq4h1YClZ4XZcUGD9Fl7uz6xQ_Nj63ZhU3qek-GiY1KZkaqZ663lE2xZyTr806hXdIW0OJ6V2Z3pXZu-rwqx2-DI2Dr_A__QOJzml5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690827472</pqid></control><display><type>article</type><title>A Trajectory Privacy Protect Method Based on Location Pair Reorganization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wu, Wanqing ; Shang, Wenlong ; Lei, Ruohe ; Yang, Xin</creator><contributor>Rajput, Dharmendra Singh ; Dharmendra Singh Rajput</contributor><creatorcontrib>Wu, Wanqing ; Shang, Wenlong ; Lei, Ruohe ; Yang, Xin ; Rajput, Dharmendra Singh ; Dharmendra Singh Rajput</creatorcontrib><description>With the rapid development of mobile Internet and communication technology, location-based services (LBS) are widely used in our daily life. The server stores a large amount of user location data, and these location data constitute user trajectories. If trajectory information on the server is leaked, it will seriously endanger users’ privacy. Trajectory k-anonymity technology is one of the most important methods to protect the privacy of user trajectory. However, current trajectory k-anonymity methods have less discussion on the semantic of stop point when selecting dummy trajectory, which leads to the fact that attacker can still exclude the dummy trajectory from the k-anonymity set and infer the real trajectory by combining background knowledge with the semantic information of stop points. To address this problem, this paper decomposes the real trajectory into location pairs set; the set consists of start-end points and stop points. According to the similarity of location pairs, the similar location pairs in history trajectory set are used to generate dummy trajectory: firstly, extracting the start-end points and stop points from real trajectory and assigning semantic to them. Then, based on the semantic, temporal, and geographical attributes, eligible location pairs are selected from history trajectory set to construct equivalence class. Finally, according to the location pairs in equivalence class, k−1 dummy trajectories are generated to form a k-anonymity set. We evaluate our method thoroughly with real dataset. The results show that our method achieve an effective data availability and higher privacy protection than other methods.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/8635275</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Datasets ; Equivalence ; Internet of Things ; Location based services ; Methods ; Privacy ; Semantics ; Smart cities</subject><ispartof>Wireless communications and mobile computing, 2022-07, Vol.2022, p.1-16</ispartof><rights>Copyright © 2022 Wanqing Wu et al.</rights><rights>Copyright © 2022 Wanqing Wu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-5dc77c11bb0b16b959be9da66cfa2d3fe131ce38c9eed7f0edac1ac5e9f81a23</cites><orcidid>0000-0003-1711-6598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><contributor>Rajput, Dharmendra Singh</contributor><contributor>Dharmendra Singh Rajput</contributor><creatorcontrib>Wu, Wanqing</creatorcontrib><creatorcontrib>Shang, Wenlong</creatorcontrib><creatorcontrib>Lei, Ruohe</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><title>A Trajectory Privacy Protect Method Based on Location Pair Reorganization</title><title>Wireless communications and mobile computing</title><description>With the rapid development of mobile Internet and communication technology, location-based services (LBS) are widely used in our daily life. The server stores a large amount of user location data, and these location data constitute user trajectories. If trajectory information on the server is leaked, it will seriously endanger users’ privacy. Trajectory k-anonymity technology is one of the most important methods to protect the privacy of user trajectory. However, current trajectory k-anonymity methods have less discussion on the semantic of stop point when selecting dummy trajectory, which leads to the fact that attacker can still exclude the dummy trajectory from the k-anonymity set and infer the real trajectory by combining background knowledge with the semantic information of stop points. To address this problem, this paper decomposes the real trajectory into location pairs set; the set consists of start-end points and stop points. According to the similarity of location pairs, the similar location pairs in history trajectory set are used to generate dummy trajectory: firstly, extracting the start-end points and stop points from real trajectory and assigning semantic to them. Then, based on the semantic, temporal, and geographical attributes, eligible location pairs are selected from history trajectory set to construct equivalence class. Finally, according to the location pairs in equivalence class, k−1 dummy trajectories are generated to form a k-anonymity set. We evaluate our method thoroughly with real dataset. The results show that our method achieve an effective data availability and higher privacy protection than other methods.</description><subject>Datasets</subject><subject>Equivalence</subject><subject>Internet of Things</subject><subject>Location based services</subject><subject>Methods</subject><subject>Privacy</subject><subject>Semantics</subject><subject>Smart cities</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWB87f0DApY7No0kmy1p8FCoW6T7cSTI2RSc1mSr11ztji0tX53D4uBc-hC4ouaFUiCEjjA1LyQVT4gANqOCkKKVSh39d6mN0kvOKEMIJowM0HeNFgpW3bUxbPE_hE2yfse0m_OTbZXT4FrJ3ODZ4Fi20oStzCAm_-JheoQnfv9sZOqrhLfvzfZ6ixf3dYvJYzJ4fppPxrLBMj9pCOKuUpbSqSEVlpYWuvHYgpa2BOV57yqn1vLTae6dq4h1YClZ4XZcUGD9Fl7uz6xQ_Nj63ZhU3qek-GiY1KZkaqZ663lE2xZyTr806hXdIW0OJ6V2Z3pXZu-rwqx2-DI2Dr_A__QOJzml5</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Wu, Wanqing</creator><creator>Shang, Wenlong</creator><creator>Lei, Ruohe</creator><creator>Yang, Xin</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1711-6598</orcidid></search><sort><creationdate>20220705</creationdate><title>A Trajectory Privacy Protect Method Based on Location Pair Reorganization</title><author>Wu, Wanqing ; Shang, Wenlong ; Lei, Ruohe ; Yang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5dc77c11bb0b16b959be9da66cfa2d3fe131ce38c9eed7f0edac1ac5e9f81a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Equivalence</topic><topic>Internet of Things</topic><topic>Location based services</topic><topic>Methods</topic><topic>Privacy</topic><topic>Semantics</topic><topic>Smart cities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wanqing</creatorcontrib><creatorcontrib>Shang, Wenlong</creatorcontrib><creatorcontrib>Lei, Ruohe</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wanqing</au><au>Shang, Wenlong</au><au>Lei, Ruohe</au><au>Yang, Xin</au><au>Rajput, Dharmendra Singh</au><au>Dharmendra Singh Rajput</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Trajectory Privacy Protect Method Based on Location Pair Reorganization</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>With the rapid development of mobile Internet and communication technology, location-based services (LBS) are widely used in our daily life. The server stores a large amount of user location data, and these location data constitute user trajectories. If trajectory information on the server is leaked, it will seriously endanger users’ privacy. Trajectory k-anonymity technology is one of the most important methods to protect the privacy of user trajectory. However, current trajectory k-anonymity methods have less discussion on the semantic of stop point when selecting dummy trajectory, which leads to the fact that attacker can still exclude the dummy trajectory from the k-anonymity set and infer the real trajectory by combining background knowledge with the semantic information of stop points. To address this problem, this paper decomposes the real trajectory into location pairs set; the set consists of start-end points and stop points. According to the similarity of location pairs, the similar location pairs in history trajectory set are used to generate dummy trajectory: firstly, extracting the start-end points and stop points from real trajectory and assigning semantic to them. Then, based on the semantic, temporal, and geographical attributes, eligible location pairs are selected from history trajectory set to construct equivalence class. Finally, according to the location pairs in equivalence class, k−1 dummy trajectories are generated to form a k-anonymity set. We evaluate our method thoroughly with real dataset. The results show that our method achieve an effective data availability and higher privacy protection than other methods.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/8635275</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1711-6598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-07, Vol.2022, p.1-16 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2690827472 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Datasets Equivalence Internet of Things Location based services Methods Privacy Semantics Smart cities |
title | A Trajectory Privacy Protect Method Based on Location Pair Reorganization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Trajectory%20Privacy%20Protect%20Method%20Based%20on%20Location%20Pair%20Reorganization&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Wu,%20Wanqing&rft.date=2022-07-05&rft.volume=2022&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/8635275&rft_dat=%3Cproquest_cross%3E2690827472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690827472&rft_id=info:pmid/&rfr_iscdi=true |