Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks

Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2022-07, Vol.2022, p.1-14
Hauptverfasser: Ding, Weichen, Zhai, Wenbin, Liu, Liang, Gu, Ying, Gao, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2022
creator Ding, Weichen
Zhai, Wenbin
Liu, Liang
Gu, Ying
Gao, Hang
description Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy.
doi_str_mv 10.1155/2022/1028251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2690826566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690826566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFq9-QNIPOpamAV291j7oU0a9VDPhAKrtLqsQNv4792mjUdPM5k8M5P3QeiakntKOR8AARhQAiVweoJ6tMqrjFCA07-esnN0EeOKEEFZwXpoPrbJ6uR8g32NX5Ve24THwbeta97xMKVugh9UtAZ3yGTrjG20xdNN3K-4Bs_8Aj_btPNhHS_RWa0-o7061j56m04Wo6ds_vI4Gw3nmc7zImVMMc64AWZEzmihjVIiXy5BMFEpRpjVwpgawHZxgCm9VIUQBSe85Izoqsz76OZwtw3-e2Njkiu_CU33UoKoSAmCC9FRdwdKBx9jsLVsg_tS4UdSIve-5N6XPPrq8NsD_uEao3buf_oXIj1nlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690826566</pqid></control><display><type>article</type><title>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Ding, Weichen ; Zhai, Wenbin ; Liu, Liang ; Gu, Ying ; Gao, Hang</creator><contributor>Wang, Kai ; Kai Wang</contributor><creatorcontrib>Ding, Weichen ; Zhai, Wenbin ; Liu, Liang ; Gu, Ying ; Gao, Hang ; Wang, Kai ; Kai Wang</creatorcontrib><description>Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/1028251</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Behavior ; Cluster analysis ; Clustering ; Cognition &amp; reasoning ; Datasets ; Energy ; Environmental monitoring ; Internet of Things ; Machine learning ; Nodes ; Packets (communication) ; Vector quantization</subject><ispartof>Security and communication networks, 2022-07, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Weichen Ding et al.</rights><rights>Copyright © 2022 Weichen Ding et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</citedby><cites>FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</cites><orcidid>0000-0002-4903-2666 ; 0000-0003-1274-5969 ; 0000-0003-0546-9062 ; 0000-0003-3229-5889 ; 0000-0003-0447-613X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Wang, Kai</contributor><contributor>Kai Wang</contributor><creatorcontrib>Ding, Weichen</creatorcontrib><creatorcontrib>Zhai, Wenbin</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><title>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</title><title>Security and communication networks</title><description>Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy.</description><subject>Algorithms</subject><subject>Behavior</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cognition &amp; reasoning</subject><subject>Datasets</subject><subject>Energy</subject><subject>Environmental monitoring</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Nodes</subject><subject>Packets (communication)</subject><subject>Vector quantization</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAyEQhonRxFq9-QNIPOpamAV291j7oU0a9VDPhAKrtLqsQNv4792mjUdPM5k8M5P3QeiakntKOR8AARhQAiVweoJ6tMqrjFCA07-esnN0EeOKEEFZwXpoPrbJ6uR8g32NX5Ve24THwbeta97xMKVugh9UtAZ3yGTrjG20xdNN3K-4Bs_8Aj_btPNhHS_RWa0-o7061j56m04Wo6ds_vI4Gw3nmc7zImVMMc64AWZEzmihjVIiXy5BMFEpRpjVwpgawHZxgCm9VIUQBSe85Izoqsz76OZwtw3-e2Njkiu_CU33UoKoSAmCC9FRdwdKBx9jsLVsg_tS4UdSIve-5N6XPPrq8NsD_uEao3buf_oXIj1nlQ</recordid><startdate>20220709</startdate><enddate>20220709</enddate><creator>Ding, Weichen</creator><creator>Zhai, Wenbin</creator><creator>Liu, Liang</creator><creator>Gu, Ying</creator><creator>Gao, Hang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4903-2666</orcidid><orcidid>https://orcid.org/0000-0003-1274-5969</orcidid><orcidid>https://orcid.org/0000-0003-0546-9062</orcidid><orcidid>https://orcid.org/0000-0003-3229-5889</orcidid><orcidid>https://orcid.org/0000-0003-0447-613X</orcidid></search><sort><creationdate>20220709</creationdate><title>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</title><author>Ding, Weichen ; Zhai, Wenbin ; Liu, Liang ; Gu, Ying ; Gao, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Behavior</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cognition &amp; reasoning</topic><topic>Datasets</topic><topic>Energy</topic><topic>Environmental monitoring</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Nodes</topic><topic>Packets (communication)</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Weichen</creatorcontrib><creatorcontrib>Zhai, Wenbin</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Weichen</au><au>Zhai, Wenbin</au><au>Liu, Liang</au><au>Gu, Ying</au><au>Gao, Hang</au><au>Wang, Kai</au><au>Kai Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</atitle><jtitle>Security and communication networks</jtitle><date>2022-07-09</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/1028251</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4903-2666</orcidid><orcidid>https://orcid.org/0000-0003-1274-5969</orcidid><orcidid>https://orcid.org/0000-0003-0546-9062</orcidid><orcidid>https://orcid.org/0000-0003-3229-5889</orcidid><orcidid>https://orcid.org/0000-0003-0447-613X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2022-07, Vol.2022, p.1-14
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2690826566
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Algorithms
Behavior
Cluster analysis
Clustering
Cognition & reasoning
Datasets
Energy
Environmental monitoring
Internet of Things
Machine learning
Nodes
Packets (communication)
Vector quantization
title Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Packet%20Dropping%20Attack%20Based%20on%20Evidence%20Fusion%20in%20IoT%20Networks&rft.jtitle=Security%20and%20communication%20networks&rft.au=Ding,%20Weichen&rft.date=2022-07-09&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/1028251&rft_dat=%3Cproquest_cross%3E2690826566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690826566&rft_id=info:pmid/&rfr_iscdi=true