Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks
Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detect...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2022-07, Vol.2022, p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2022 |
creator | Ding, Weichen Zhai, Wenbin Liu, Liang Gu, Ying Gao, Hang |
description | Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy. |
doi_str_mv | 10.1155/2022/1028251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2690826566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690826566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFq9-QNIPOpamAV291j7oU0a9VDPhAKrtLqsQNv4792mjUdPM5k8M5P3QeiakntKOR8AARhQAiVweoJ6tMqrjFCA07-esnN0EeOKEEFZwXpoPrbJ6uR8g32NX5Ve24THwbeta97xMKVugh9UtAZ3yGTrjG20xdNN3K-4Bs_8Aj_btPNhHS_RWa0-o7061j56m04Wo6ds_vI4Gw3nmc7zImVMMc64AWZEzmihjVIiXy5BMFEpRpjVwpgawHZxgCm9VIUQBSe85Izoqsz76OZwtw3-e2Njkiu_CU33UoKoSAmCC9FRdwdKBx9jsLVsg_tS4UdSIve-5N6XPPrq8NsD_uEao3buf_oXIj1nlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690826566</pqid></control><display><type>article</type><title>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Ding, Weichen ; Zhai, Wenbin ; Liu, Liang ; Gu, Ying ; Gao, Hang</creator><contributor>Wang, Kai ; Kai Wang</contributor><creatorcontrib>Ding, Weichen ; Zhai, Wenbin ; Liu, Liang ; Gu, Ying ; Gao, Hang ; Wang, Kai ; Kai Wang</creatorcontrib><description>Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2022/1028251</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Behavior ; Cluster analysis ; Clustering ; Cognition & reasoning ; Datasets ; Energy ; Environmental monitoring ; Internet of Things ; Machine learning ; Nodes ; Packets (communication) ; Vector quantization</subject><ispartof>Security and communication networks, 2022-07, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Weichen Ding et al.</rights><rights>Copyright © 2022 Weichen Ding et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</citedby><cites>FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</cites><orcidid>0000-0002-4903-2666 ; 0000-0003-1274-5969 ; 0000-0003-0546-9062 ; 0000-0003-3229-5889 ; 0000-0003-0447-613X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Wang, Kai</contributor><contributor>Kai Wang</contributor><creatorcontrib>Ding, Weichen</creatorcontrib><creatorcontrib>Zhai, Wenbin</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><title>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</title><title>Security and communication networks</title><description>Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy.</description><subject>Algorithms</subject><subject>Behavior</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cognition & reasoning</subject><subject>Datasets</subject><subject>Energy</subject><subject>Environmental monitoring</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Nodes</subject><subject>Packets (communication)</subject><subject>Vector quantization</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAyEQhonRxFq9-QNIPOpamAV291j7oU0a9VDPhAKrtLqsQNv4792mjUdPM5k8M5P3QeiakntKOR8AARhQAiVweoJ6tMqrjFCA07-esnN0EeOKEEFZwXpoPrbJ6uR8g32NX5Ve24THwbeta97xMKVugh9UtAZ3yGTrjG20xdNN3K-4Bs_8Aj_btPNhHS_RWa0-o7061j56m04Wo6ds_vI4Gw3nmc7zImVMMc64AWZEzmihjVIiXy5BMFEpRpjVwpgawHZxgCm9VIUQBSe85Izoqsz76OZwtw3-e2Njkiu_CU33UoKoSAmCC9FRdwdKBx9jsLVsg_tS4UdSIve-5N6XPPrq8NsD_uEao3buf_oXIj1nlQ</recordid><startdate>20220709</startdate><enddate>20220709</enddate><creator>Ding, Weichen</creator><creator>Zhai, Wenbin</creator><creator>Liu, Liang</creator><creator>Gu, Ying</creator><creator>Gao, Hang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4903-2666</orcidid><orcidid>https://orcid.org/0000-0003-1274-5969</orcidid><orcidid>https://orcid.org/0000-0003-0546-9062</orcidid><orcidid>https://orcid.org/0000-0003-3229-5889</orcidid><orcidid>https://orcid.org/0000-0003-0447-613X</orcidid></search><sort><creationdate>20220709</creationdate><title>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</title><author>Ding, Weichen ; Zhai, Wenbin ; Liu, Liang ; Gu, Ying ; Gao, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4a4545d24d63417cdaa63bb26469a404ec6ddf22e02224acba76675058540c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Behavior</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cognition & reasoning</topic><topic>Datasets</topic><topic>Energy</topic><topic>Environmental monitoring</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Nodes</topic><topic>Packets (communication)</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Weichen</creatorcontrib><creatorcontrib>Zhai, Wenbin</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Gu, Ying</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Weichen</au><au>Zhai, Wenbin</au><au>Liu, Liang</au><au>Gu, Ying</au><au>Gao, Hang</au><au>Wang, Kai</au><au>Kai Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks</atitle><jtitle>Security and communication networks</jtitle><date>2022-07-09</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>Internet of Things (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. The existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For example, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm (EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of dropped packets and their corresponding source nodes. Then, it traces the routing path of each dropped packet and collects evidence for detection. The evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms. The experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a higher detection accuracy.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2022/1028251</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4903-2666</orcidid><orcidid>https://orcid.org/0000-0003-1274-5969</orcidid><orcidid>https://orcid.org/0000-0003-0546-9062</orcidid><orcidid>https://orcid.org/0000-0003-3229-5889</orcidid><orcidid>https://orcid.org/0000-0003-0447-613X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2022-07, Vol.2022, p.1-14 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2690826566 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Algorithms Behavior Cluster analysis Clustering Cognition & reasoning Datasets Energy Environmental monitoring Internet of Things Machine learning Nodes Packets (communication) Vector quantization |
title | Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Packet%20Dropping%20Attack%20Based%20on%20Evidence%20Fusion%20in%20IoT%20Networks&rft.jtitle=Security%20and%20communication%20networks&rft.au=Ding,%20Weichen&rft.date=2022-07-09&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2022/1028251&rft_dat=%3Cproquest_cross%3E2690826566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690826566&rft_id=info:pmid/&rfr_iscdi=true |