Microbial biopolymers in articular cartilage tissue engineering
Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mi...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2022-08, Vol.29 (8), Article 334 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of polymer research |
container_volume | 29 |
creator | BİNGÜL, Nur Deniz ÖZ, Yunus Emre ŞENDEMİR, Aylin HAMEŞ, Elif Esin |
description | Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering. |
doi_str_mv | 10.1007/s10965-022-03178-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2690721903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710562644</galeid><sourcerecordid>A710562644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19WbpEmalQyDLxhxo-uQpmnJ0JdJu5h_b2qFQRAJJJeTc-69fAhdY7jFAOIuYJCcpUBIChSLPIUTtMJMkDSXlJ3Gev6SgsM5ughhD8CY4PkK3b864_vC6SYpXD_0zaG1PiSuS7QfnZka7RMzl42ubTK6ECab2K52nbXedfUlOqt0E-zVz7tGH48P79vndPf29LLd7FJDcz6mBLguKCWlxgWtCmmZoZmoilJAnlljDC9FTmQuCNdQsihRqSUzJmqATUXX6GbpO_j-c7JhVPt-8l0cqQiXIAiWQI-uWjdWua7qR69N64JRG4GBccKzLLpu_3DFU9rWmb6zlYv6rwBZAhFVCN5WavCu1f6gMKiZv1r4qwhZffOP9xrRJRSGGZT1x43_SX0Bbc-G-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690721903</pqid></control><display><type>article</type><title>Microbial biopolymers in articular cartilage tissue engineering</title><source>SpringerLink Journals - AutoHoldings</source><creator>BİNGÜL, Nur Deniz ; ÖZ, Yunus Emre ; ŞENDEMİR, Aylin ; HAMEŞ, Elif Esin</creator><creatorcontrib>BİNGÜL, Nur Deniz ; ÖZ, Yunus Emre ; ŞENDEMİR, Aylin ; HAMEŞ, Elif Esin</creatorcontrib><description>Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-022-03178-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alginates ; Biocompatibility ; Biodegradability ; Biopolymers ; Cartilage ; Cellulose ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Damage ; Dextran ; Dextrans ; Gellan gum ; Glutamic acid ; Growth factors ; Hyaluronic acid ; Industrial Chemistry/Chemical Engineering ; Lysine ; Mechanical properties ; Microorganisms ; Polyamide resins ; Polyamides ; Polyester resins ; Polyhydroxyalkanoates ; Polymer Sciences ; Polyols ; Polysaccharides ; Repair ; Review Paper ; Scaffolds ; Tissue engineering ; Xanthan</subject><ispartof>Journal of polymer research, 2022-08, Vol.29 (8), Article 334</ispartof><rights>The Polymer Society, Taipei 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Polymer Society, Taipei 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</citedby><cites>FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</cites><orcidid>0000-0002-8800-4924 ; 0000-0002-6418-5257 ; 0000-0001-7302-4781 ; 0000-0003-1818-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-022-03178-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-022-03178-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>BİNGÜL, Nur Deniz</creatorcontrib><creatorcontrib>ÖZ, Yunus Emre</creatorcontrib><creatorcontrib>ŞENDEMİR, Aylin</creatorcontrib><creatorcontrib>HAMEŞ, Elif Esin</creatorcontrib><title>Microbial biopolymers in articular cartilage tissue engineering</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.</description><subject>Alginates</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biopolymers</subject><subject>Cartilage</subject><subject>Cellulose</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Damage</subject><subject>Dextran</subject><subject>Dextrans</subject><subject>Gellan gum</subject><subject>Glutamic acid</subject><subject>Growth factors</subject><subject>Hyaluronic acid</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lysine</subject><subject>Mechanical properties</subject><subject>Microorganisms</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polyester resins</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymer Sciences</subject><subject>Polyols</subject><subject>Polysaccharides</subject><subject>Repair</subject><subject>Review Paper</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><subject>Xanthan</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19WbpEmalQyDLxhxo-uQpmnJ0JdJu5h_b2qFQRAJJJeTc-69fAhdY7jFAOIuYJCcpUBIChSLPIUTtMJMkDSXlJ3Gev6SgsM5ughhD8CY4PkK3b864_vC6SYpXD_0zaG1PiSuS7QfnZka7RMzl42ubTK6ECab2K52nbXedfUlOqt0E-zVz7tGH48P79vndPf29LLd7FJDcz6mBLguKCWlxgWtCmmZoZmoilJAnlljDC9FTmQuCNdQsihRqSUzJmqATUXX6GbpO_j-c7JhVPt-8l0cqQiXIAiWQI-uWjdWua7qR69N64JRG4GBccKzLLpu_3DFU9rWmb6zlYv6rwBZAhFVCN5WavCu1f6gMKiZv1r4qwhZffOP9xrRJRSGGZT1x43_SX0Bbc-G-A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>BİNGÜL, Nur Deniz</creator><creator>ÖZ, Yunus Emre</creator><creator>ŞENDEMİR, Aylin</creator><creator>HAMEŞ, Elif Esin</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8800-4924</orcidid><orcidid>https://orcid.org/0000-0002-6418-5257</orcidid><orcidid>https://orcid.org/0000-0001-7302-4781</orcidid><orcidid>https://orcid.org/0000-0003-1818-6651</orcidid></search><sort><creationdate>20220801</creationdate><title>Microbial biopolymers in articular cartilage tissue engineering</title><author>BİNGÜL, Nur Deniz ; ÖZ, Yunus Emre ; ŞENDEMİR, Aylin ; HAMEŞ, Elif Esin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alginates</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biopolymers</topic><topic>Cartilage</topic><topic>Cellulose</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Damage</topic><topic>Dextran</topic><topic>Dextrans</topic><topic>Gellan gum</topic><topic>Glutamic acid</topic><topic>Growth factors</topic><topic>Hyaluronic acid</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lysine</topic><topic>Mechanical properties</topic><topic>Microorganisms</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polyester resins</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymer Sciences</topic><topic>Polyols</topic><topic>Polysaccharides</topic><topic>Repair</topic><topic>Review Paper</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><topic>Xanthan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BİNGÜL, Nur Deniz</creatorcontrib><creatorcontrib>ÖZ, Yunus Emre</creatorcontrib><creatorcontrib>ŞENDEMİR, Aylin</creatorcontrib><creatorcontrib>HAMEŞ, Elif Esin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BİNGÜL, Nur Deniz</au><au>ÖZ, Yunus Emre</au><au>ŞENDEMİR, Aylin</au><au>HAMEŞ, Elif Esin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial biopolymers in articular cartilage tissue engineering</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>29</volume><issue>8</issue><artnum>334</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-022-03178-0</doi><orcidid>https://orcid.org/0000-0002-8800-4924</orcidid><orcidid>https://orcid.org/0000-0002-6418-5257</orcidid><orcidid>https://orcid.org/0000-0001-7302-4781</orcidid><orcidid>https://orcid.org/0000-0003-1818-6651</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-9760 |
ispartof | Journal of polymer research, 2022-08, Vol.29 (8), Article 334 |
issn | 1022-9760 1572-8935 |
language | eng |
recordid | cdi_proquest_journals_2690721903 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alginates Biocompatibility Biodegradability Biopolymers Cartilage Cellulose Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Damage Dextran Dextrans Gellan gum Glutamic acid Growth factors Hyaluronic acid Industrial Chemistry/Chemical Engineering Lysine Mechanical properties Microorganisms Polyamide resins Polyamides Polyester resins Polyhydroxyalkanoates Polymer Sciences Polyols Polysaccharides Repair Review Paper Scaffolds Tissue engineering Xanthan |
title | Microbial biopolymers in articular cartilage tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20biopolymers%20in%20articular%20cartilage%20tissue%20engineering&rft.jtitle=Journal%20of%20polymer%20research&rft.au=B%C4%B0NG%C3%9CL,%20Nur%20Deniz&rft.date=2022-08-01&rft.volume=29&rft.issue=8&rft.artnum=334&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-022-03178-0&rft_dat=%3Cgale_proqu%3EA710562644%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690721903&rft_id=info:pmid/&rft_galeid=A710562644&rfr_iscdi=true |