Microbial biopolymers in articular cartilage tissue engineering

Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer research 2022-08, Vol.29 (8), Article 334
Hauptverfasser: BİNGÜL, Nur Deniz, ÖZ, Yunus Emre, ŞENDEMİR, Aylin, HAMEŞ, Elif Esin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of polymer research
container_volume 29
creator BİNGÜL, Nur Deniz
ÖZ, Yunus Emre
ŞENDEMİR, Aylin
HAMEŞ, Elif Esin
description Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.
doi_str_mv 10.1007/s10965-022-03178-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2690721903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710562644</galeid><sourcerecordid>A710562644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19WbpEmalQyDLxhxo-uQpmnJ0JdJu5h_b2qFQRAJJJeTc-69fAhdY7jFAOIuYJCcpUBIChSLPIUTtMJMkDSXlJ3Gev6SgsM5ughhD8CY4PkK3b864_vC6SYpXD_0zaG1PiSuS7QfnZka7RMzl42ubTK6ECab2K52nbXedfUlOqt0E-zVz7tGH48P79vndPf29LLd7FJDcz6mBLguKCWlxgWtCmmZoZmoilJAnlljDC9FTmQuCNdQsihRqSUzJmqATUXX6GbpO_j-c7JhVPt-8l0cqQiXIAiWQI-uWjdWua7qR69N64JRG4GBccKzLLpu_3DFU9rWmb6zlYv6rwBZAhFVCN5WavCu1f6gMKiZv1r4qwhZffOP9xrRJRSGGZT1x43_SX0Bbc-G-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690721903</pqid></control><display><type>article</type><title>Microbial biopolymers in articular cartilage tissue engineering</title><source>SpringerLink Journals - AutoHoldings</source><creator>BİNGÜL, Nur Deniz ; ÖZ, Yunus Emre ; ŞENDEMİR, Aylin ; HAMEŞ, Elif Esin</creator><creatorcontrib>BİNGÜL, Nur Deniz ; ÖZ, Yunus Emre ; ŞENDEMİR, Aylin ; HAMEŞ, Elif Esin</creatorcontrib><description>Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-022-03178-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alginates ; Biocompatibility ; Biodegradability ; Biopolymers ; Cartilage ; Cellulose ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Damage ; Dextran ; Dextrans ; Gellan gum ; Glutamic acid ; Growth factors ; Hyaluronic acid ; Industrial Chemistry/Chemical Engineering ; Lysine ; Mechanical properties ; Microorganisms ; Polyamide resins ; Polyamides ; Polyester resins ; Polyhydroxyalkanoates ; Polymer Sciences ; Polyols ; Polysaccharides ; Repair ; Review Paper ; Scaffolds ; Tissue engineering ; Xanthan</subject><ispartof>Journal of polymer research, 2022-08, Vol.29 (8), Article 334</ispartof><rights>The Polymer Society, Taipei 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Polymer Society, Taipei 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</citedby><cites>FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</cites><orcidid>0000-0002-8800-4924 ; 0000-0002-6418-5257 ; 0000-0001-7302-4781 ; 0000-0003-1818-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-022-03178-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-022-03178-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>BİNGÜL, Nur Deniz</creatorcontrib><creatorcontrib>ÖZ, Yunus Emre</creatorcontrib><creatorcontrib>ŞENDEMİR, Aylin</creatorcontrib><creatorcontrib>HAMEŞ, Elif Esin</creatorcontrib><title>Microbial biopolymers in articular cartilage tissue engineering</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.</description><subject>Alginates</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biopolymers</subject><subject>Cartilage</subject><subject>Cellulose</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Damage</subject><subject>Dextran</subject><subject>Dextrans</subject><subject>Gellan gum</subject><subject>Glutamic acid</subject><subject>Growth factors</subject><subject>Hyaluronic acid</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lysine</subject><subject>Mechanical properties</subject><subject>Microorganisms</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polyester resins</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymer Sciences</subject><subject>Polyols</subject><subject>Polysaccharides</subject><subject>Repair</subject><subject>Review Paper</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><subject>Xanthan</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19WbpEmalQyDLxhxo-uQpmnJ0JdJu5h_b2qFQRAJJJeTc-69fAhdY7jFAOIuYJCcpUBIChSLPIUTtMJMkDSXlJ3Gev6SgsM5ughhD8CY4PkK3b864_vC6SYpXD_0zaG1PiSuS7QfnZka7RMzl42ubTK6ECab2K52nbXedfUlOqt0E-zVz7tGH48P79vndPf29LLd7FJDcz6mBLguKCWlxgWtCmmZoZmoilJAnlljDC9FTmQuCNdQsihRqSUzJmqATUXX6GbpO_j-c7JhVPt-8l0cqQiXIAiWQI-uWjdWua7qR69N64JRG4GBccKzLLpu_3DFU9rWmb6zlYv6rwBZAhFVCN5WavCu1f6gMKiZv1r4qwhZffOP9xrRJRSGGZT1x43_SX0Bbc-G-A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>BİNGÜL, Nur Deniz</creator><creator>ÖZ, Yunus Emre</creator><creator>ŞENDEMİR, Aylin</creator><creator>HAMEŞ, Elif Esin</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8800-4924</orcidid><orcidid>https://orcid.org/0000-0002-6418-5257</orcidid><orcidid>https://orcid.org/0000-0001-7302-4781</orcidid><orcidid>https://orcid.org/0000-0003-1818-6651</orcidid></search><sort><creationdate>20220801</creationdate><title>Microbial biopolymers in articular cartilage tissue engineering</title><author>BİNGÜL, Nur Deniz ; ÖZ, Yunus Emre ; ŞENDEMİR, Aylin ; HAMEŞ, Elif Esin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-206ab332da1b3fb9e5c347fbd7084eccc6d78298726a0d54ec39a95cc29801cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alginates</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biopolymers</topic><topic>Cartilage</topic><topic>Cellulose</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Damage</topic><topic>Dextran</topic><topic>Dextrans</topic><topic>Gellan gum</topic><topic>Glutamic acid</topic><topic>Growth factors</topic><topic>Hyaluronic acid</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lysine</topic><topic>Mechanical properties</topic><topic>Microorganisms</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polyester resins</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymer Sciences</topic><topic>Polyols</topic><topic>Polysaccharides</topic><topic>Repair</topic><topic>Review Paper</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><topic>Xanthan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BİNGÜL, Nur Deniz</creatorcontrib><creatorcontrib>ÖZ, Yunus Emre</creatorcontrib><creatorcontrib>ŞENDEMİR, Aylin</creatorcontrib><creatorcontrib>HAMEŞ, Elif Esin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BİNGÜL, Nur Deniz</au><au>ÖZ, Yunus Emre</au><au>ŞENDEMİR, Aylin</au><au>HAMEŞ, Elif Esin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial biopolymers in articular cartilage tissue engineering</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>29</volume><issue>8</issue><artnum>334</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Articular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-γ-glutamic acid and ε-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-022-03178-0</doi><orcidid>https://orcid.org/0000-0002-8800-4924</orcidid><orcidid>https://orcid.org/0000-0002-6418-5257</orcidid><orcidid>https://orcid.org/0000-0001-7302-4781</orcidid><orcidid>https://orcid.org/0000-0003-1818-6651</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-9760
ispartof Journal of polymer research, 2022-08, Vol.29 (8), Article 334
issn 1022-9760
1572-8935
language eng
recordid cdi_proquest_journals_2690721903
source SpringerLink Journals - AutoHoldings
subjects Alginates
Biocompatibility
Biodegradability
Biopolymers
Cartilage
Cellulose
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Damage
Dextran
Dextrans
Gellan gum
Glutamic acid
Growth factors
Hyaluronic acid
Industrial Chemistry/Chemical Engineering
Lysine
Mechanical properties
Microorganisms
Polyamide resins
Polyamides
Polyester resins
Polyhydroxyalkanoates
Polymer Sciences
Polyols
Polysaccharides
Repair
Review Paper
Scaffolds
Tissue engineering
Xanthan
title Microbial biopolymers in articular cartilage tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20biopolymers%20in%20articular%20cartilage%20tissue%20engineering&rft.jtitle=Journal%20of%20polymer%20research&rft.au=B%C4%B0NG%C3%9CL,%20Nur%20Deniz&rft.date=2022-08-01&rft.volume=29&rft.issue=8&rft.artnum=334&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-022-03178-0&rft_dat=%3Cgale_proqu%3EA710562644%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690721903&rft_id=info:pmid/&rft_galeid=A710562644&rfr_iscdi=true