Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate
β-Ni(OH) 2 has been synthesized using Ni 3 (PO 4 ) 2 nanowires as precursors by in-situ electrochemical method. X-ray diffraction and selected area electron diffraction displayed that as-prepared Ni 3 (PO 4 ) 2 nanowires were transformed into β-Ni(OH) 2 with superlattice structure after activation....
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2022-08, Vol.152 (8), p.2333-2341 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2341 |
---|---|
container_issue | 8 |
container_start_page | 2333 |
container_title | Catalysis letters |
container_volume | 152 |
creator | Chen, Jiaye Jayabal, Subramaniam Geng, Dongsheng Hu, Xun |
description | β-Ni(OH)
2
has been synthesized using Ni
3
(PO
4
)
2
nanowires as precursors by
in-situ
electrochemical method. X-ray diffraction and selected area electron diffraction displayed that as-prepared Ni
3
(PO
4
)
2
nanowires were transformed into β-Ni(OH)
2
with superlattice structure after activation. It has been found that extremely small size is crucial for the complete conversion of Ni
3
(PO
4
)
2
and the formation of the superlattice structure. The resulting catalysts by
in-situ
conversion showed high activity and stability toward oxygen evolution reaction (OER) with an overpotential of 310 mV to reach the current density of 10 mA cm
−2
and a long-term stability of 110 h. The large amount of NiOOH in the superlattice structure not only increases the OER activity of β-Ni(OH)
2
, but also improves the oxidation potential of nickel, thereby decreasing the dissolution. This work proves the feasibility of
in-situ
electrochemical synthesis for high-performance and stable hydroxide catalysts towards OER.
Graphic Abstract |
doi_str_mv | 10.1007/s10562-021-03816-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2690362191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710562807</galeid><sourcerecordid>A710562807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-d450e073cd8b890ca3d75be216c665eb7e8a7bccbf3d6b7aa458b4f37b202103</originalsourceid><addsrcrecordid>eNp9kV9PHCEUxUnTJrVbv0CfSPrUB_QCO8PMo934LzHa6Cb6hheG2cWOwxbYRL-9rGNifGl4gFx-53Iuh5AfHA44gDpMHKpaMBCcgWx4zeAT2eOVEqxR7d3ncgbOmVTi7iv5ltIDALSKt3vk_iajGRy9xewivXryHWYfRrrAjMNzyon-xuQ6Wkp-ZMnnLT0enM0x2LV79BYHuow4loudKvT00tu_bqB_1iFt1qXpd_KlxyG5_bd9RpYnx8vFGbu4Oj1fHF0wK-cys25egQMlbdeYpgWLslOVcYLXtq4rZ5RrUBlrTS-72ijEedWYeS-VEWVokDPyc2q7ieHf1qWsH8I2juVFLeoWZC14ywt1MFErHJz2Yx9yRFtWt5sljK73pX6kXn-zKXZm5NcHQWGye8or3Kakz2-uP7JiYm0MKUXX6030jxifNQe9S0lPKeliWL-mpHe-5SRKBR5XLr77_o_qBYRilKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690362191</pqid></control><display><type>article</type><title>Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate</title><source>SpringerNature Journals</source><creator>Chen, Jiaye ; Jayabal, Subramaniam ; Geng, Dongsheng ; Hu, Xun</creator><creatorcontrib>Chen, Jiaye ; Jayabal, Subramaniam ; Geng, Dongsheng ; Hu, Xun</creatorcontrib><description>β-Ni(OH)
2
has been synthesized using Ni
3
(PO
4
)
2
nanowires as precursors by
in-situ
electrochemical method. X-ray diffraction and selected area electron diffraction displayed that as-prepared Ni
3
(PO
4
)
2
nanowires were transformed into β-Ni(OH)
2
with superlattice structure after activation. It has been found that extremely small size is crucial for the complete conversion of Ni
3
(PO
4
)
2
and the formation of the superlattice structure. The resulting catalysts by
in-situ
conversion showed high activity and stability toward oxygen evolution reaction (OER) with an overpotential of 310 mV to reach the current density of 10 mA cm
−2
and a long-term stability of 110 h. The large amount of NiOOH in the superlattice structure not only increases the OER activity of β-Ni(OH)
2
, but also improves the oxidation potential of nickel, thereby decreasing the dissolution. This work proves the feasibility of
in-situ
electrochemical synthesis for high-performance and stable hydroxide catalysts towards OER.
Graphic Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-021-03816-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternative energy sources ; Catalysis ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Conversion ; Diffraction ; Electric properties ; Electron diffraction ; Hydrogen ; Hydroxides ; Industrial Chemistry/Chemical Engineering ; Microscopy ; Nanowires ; Nickel ; Nickel compounds ; Nitrates ; Organometallic Chemistry ; Oxidation ; Oxidation-reduction reaction ; Oxygen evolution reactions ; Phosphates ; Physical Chemistry ; Spectrum analysis ; Stability ; Superlattices ; Voltammetry ; X-rays</subject><ispartof>Catalysis letters, 2022-08, Vol.152 (8), p.2333-2341</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-d450e073cd8b890ca3d75be216c665eb7e8a7bccbf3d6b7aa458b4f37b202103</cites><orcidid>0000-0003-0910-8985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-021-03816-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-021-03816-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Jiaye</creatorcontrib><creatorcontrib>Jayabal, Subramaniam</creatorcontrib><creatorcontrib>Geng, Dongsheng</creatorcontrib><creatorcontrib>Hu, Xun</creatorcontrib><title>Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>β-Ni(OH)
2
has been synthesized using Ni
3
(PO
4
)
2
nanowires as precursors by
in-situ
electrochemical method. X-ray diffraction and selected area electron diffraction displayed that as-prepared Ni
3
(PO
4
)
2
nanowires were transformed into β-Ni(OH)
2
with superlattice structure after activation. It has been found that extremely small size is crucial for the complete conversion of Ni
3
(PO
4
)
2
and the formation of the superlattice structure. The resulting catalysts by
in-situ
conversion showed high activity and stability toward oxygen evolution reaction (OER) with an overpotential of 310 mV to reach the current density of 10 mA cm
−2
and a long-term stability of 110 h. The large amount of NiOOH in the superlattice structure not only increases the OER activity of β-Ni(OH)
2
, but also improves the oxidation potential of nickel, thereby decreasing the dissolution. This work proves the feasibility of
in-situ
electrochemical synthesis for high-performance and stable hydroxide catalysts towards OER.
Graphic Abstract</description><subject>Alternative energy sources</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Diffraction</subject><subject>Electric properties</subject><subject>Electron diffraction</subject><subject>Hydrogen</subject><subject>Hydroxides</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microscopy</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Nitrates</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Oxygen evolution reactions</subject><subject>Phosphates</subject><subject>Physical Chemistry</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Superlattices</subject><subject>Voltammetry</subject><subject>X-rays</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kV9PHCEUxUnTJrVbv0CfSPrUB_QCO8PMo934LzHa6Cb6hheG2cWOwxbYRL-9rGNifGl4gFx-53Iuh5AfHA44gDpMHKpaMBCcgWx4zeAT2eOVEqxR7d3ncgbOmVTi7iv5ltIDALSKt3vk_iajGRy9xewivXryHWYfRrrAjMNzyon-xuQ6Wkp-ZMnnLT0enM0x2LV79BYHuow4loudKvT00tu_bqB_1iFt1qXpd_KlxyG5_bd9RpYnx8vFGbu4Oj1fHF0wK-cys25egQMlbdeYpgWLslOVcYLXtq4rZ5RrUBlrTS-72ijEedWYeS-VEWVokDPyc2q7ieHf1qWsH8I2juVFLeoWZC14ywt1MFErHJz2Yx9yRFtWt5sljK73pX6kXn-zKXZm5NcHQWGye8or3Kakz2-uP7JiYm0MKUXX6030jxifNQe9S0lPKeliWL-mpHe-5SRKBR5XLr77_o_qBYRilKk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Chen, Jiaye</creator><creator>Jayabal, Subramaniam</creator><creator>Geng, Dongsheng</creator><creator>Hu, Xun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0910-8985</orcidid></search><sort><creationdate>20220801</creationdate><title>Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate</title><author>Chen, Jiaye ; Jayabal, Subramaniam ; Geng, Dongsheng ; Hu, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-d450e073cd8b890ca3d75be216c665eb7e8a7bccbf3d6b7aa458b4f37b202103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Diffraction</topic><topic>Electric properties</topic><topic>Electron diffraction</topic><topic>Hydrogen</topic><topic>Hydroxides</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microscopy</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Nitrates</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Oxygen evolution reactions</topic><topic>Phosphates</topic><topic>Physical Chemistry</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Superlattices</topic><topic>Voltammetry</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiaye</creatorcontrib><creatorcontrib>Jayabal, Subramaniam</creatorcontrib><creatorcontrib>Geng, Dongsheng</creatorcontrib><creatorcontrib>Hu, Xun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiaye</au><au>Jayabal, Subramaniam</au><au>Geng, Dongsheng</au><au>Hu, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>152</volume><issue>8</issue><spage>2333</spage><epage>2341</epage><pages>2333-2341</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>β-Ni(OH)
2
has been synthesized using Ni
3
(PO
4
)
2
nanowires as precursors by
in-situ
electrochemical method. X-ray diffraction and selected area electron diffraction displayed that as-prepared Ni
3
(PO
4
)
2
nanowires were transformed into β-Ni(OH)
2
with superlattice structure after activation. It has been found that extremely small size is crucial for the complete conversion of Ni
3
(PO
4
)
2
and the formation of the superlattice structure. The resulting catalysts by
in-situ
conversion showed high activity and stability toward oxygen evolution reaction (OER) with an overpotential of 310 mV to reach the current density of 10 mA cm
−2
and a long-term stability of 110 h. The large amount of NiOOH in the superlattice structure not only increases the OER activity of β-Ni(OH)
2
, but also improves the oxidation potential of nickel, thereby decreasing the dissolution. This work proves the feasibility of
in-situ
electrochemical synthesis for high-performance and stable hydroxide catalysts towards OER.
Graphic Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-021-03816-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0910-8985</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2022-08, Vol.152 (8), p.2333-2341 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2690362191 |
source | SpringerNature Journals |
subjects | Alternative energy sources Catalysis Catalysts Chemical synthesis Chemistry Chemistry and Materials Science Conversion Diffraction Electric properties Electron diffraction Hydrogen Hydroxides Industrial Chemistry/Chemical Engineering Microscopy Nanowires Nickel Nickel compounds Nitrates Organometallic Chemistry Oxidation Oxidation-reduction reaction Oxygen evolution reactions Phosphates Physical Chemistry Spectrum analysis Stability Superlattices Voltammetry X-rays |
title | Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Water%20Oxidation%20Catalysts%20Based%20on%20in-situ%20Electrochemical%20Transition%20of%20Nickel%20Phosphate&rft.jtitle=Catalysis%20letters&rft.au=Chen,%20Jiaye&rft.date=2022-08-01&rft.volume=152&rft.issue=8&rft.spage=2333&rft.epage=2341&rft.pages=2333-2341&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-021-03816-0&rft_dat=%3Cgale_proqu%3EA710562807%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690362191&rft_id=info:pmid/&rft_galeid=A710562807&rfr_iscdi=true |