Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces

In this paper, we consider canonical -planar mappings of spaces with affine connection on two symmetric spaces. The basic equations of such mappings are obtained in the form of a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which its solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2022-03, Vol.43 (3), p.533-538
Hauptverfasser: Berezovskii, V. E., Kuzmina, I. A., Mikeš, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 3
container_start_page 533
container_title Lobachevskii journal of mathematics
container_volume 43
creator Berezovskii, V. E.
Kuzmina, I. A.
Mikeš, J.
description In this paper, we consider canonical -planar mappings of spaces with affine connection on two symmetric spaces. The basic equations of such mappings are obtained in the form of a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which its solution depends has been established.
doi_str_mv 10.1134/S1995080222060063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2690237554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690237554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1c5a8bb7ebd780630fc42339d454665251df5742c6e7da3fce30066f00d259233</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82r-7-ZYFmuFisLW85Jmk5rSJmuypfTbm9KCB_E0A_N7b2YeAPcYPWJM2VODpeSoQoQQJBAS9AKMcIWrQkpBLnOfx8Vxfg1uUlqjDAohRmBRKx-802oDp8XHRnkV4Zvqe-dXCQYLm15pk-DeDV9wYq3zBtbBe6MHFzwcAlzsA2wO260ZotNn_BZcWbVJ5u5cx-Bz-ryoZ8X8_eW1nswLTZgYCqy5qpbL0iy7ssonI6sZoVR2jDMhOOG4s7xkRAtTdopabWj-TFiEOsJlJsfg4eTbx_C9M2lo12EXfV7ZEiERoSXnLFP4ROkYUorGtn10WxUPLUbtMbz2T3hZQ06alFm_MvHX-X_RD1K5bv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690237554</pqid></control><display><type>article</type><title>Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces</title><source>SpringerNature Journals</source><creator>Berezovskii, V. E. ; Kuzmina, I. A. ; Mikeš, J.</creator><creatorcontrib>Berezovskii, V. E. ; Kuzmina, I. A. ; Mikeš, J.</creatorcontrib><description>In this paper, we consider canonical -planar mappings of spaces with affine connection on two symmetric spaces. The basic equations of such mappings are obtained in the form of a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which its solution depends has been established.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222060063</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2022-03, Vol.43 (3), p.533-538</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-1c5a8bb7ebd780630fc42339d454665251df5742c6e7da3fce30066f00d259233</citedby><cites>FETCH-LOGICAL-c246t-1c5a8bb7ebd780630fc42339d454665251df5742c6e7da3fce30066f00d259233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080222060063$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080222060063$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Berezovskii, V. E.</creatorcontrib><creatorcontrib>Kuzmina, I. A.</creatorcontrib><creatorcontrib>Mikeš, J.</creatorcontrib><title>Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we consider canonical -planar mappings of spaces with affine connection on two symmetric spaces. The basic equations of such mappings are obtained in the form of a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which its solution depends has been established.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82r-7-ZYFmuFisLW85Jmk5rSJmuypfTbm9KCB_E0A_N7b2YeAPcYPWJM2VODpeSoQoQQJBAS9AKMcIWrQkpBLnOfx8Vxfg1uUlqjDAohRmBRKx-802oDp8XHRnkV4Zvqe-dXCQYLm15pk-DeDV9wYq3zBtbBe6MHFzwcAlzsA2wO260ZotNn_BZcWbVJ5u5cx-Bz-ryoZ8X8_eW1nswLTZgYCqy5qpbL0iy7ssonI6sZoVR2jDMhOOG4s7xkRAtTdopabWj-TFiEOsJlJsfg4eTbx_C9M2lo12EXfV7ZEiERoSXnLFP4ROkYUorGtn10WxUPLUbtMbz2T3hZQ06alFm_MvHX-X_RD1K5bv4</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Berezovskii, V. E.</creator><creator>Kuzmina, I. A.</creator><creator>Mikeš, J.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces</title><author>Berezovskii, V. E. ; Kuzmina, I. A. ; Mikeš, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1c5a8bb7ebd780630fc42339d454665251df5742c6e7da3fce30066f00d259233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berezovskii, V. E.</creatorcontrib><creatorcontrib>Kuzmina, I. A.</creatorcontrib><creatorcontrib>Mikeš, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berezovskii, V. E.</au><au>Kuzmina, I. A.</au><au>Mikeš, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>43</volume><issue>3</issue><spage>533</spage><epage>538</epage><pages>533-538</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we consider canonical -planar mappings of spaces with affine connection on two symmetric spaces. The basic equations of such mappings are obtained in the form of a closed system of Cauchy-type equations in covariant derivatives. The number of essential parameters on which its solution depends has been established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222060063</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2022-03, Vol.43 (3), p.533-538
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2690237554
source SpringerNature Journals
subjects Algebra
Analysis
Geometry
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20F-Planar%20Mappings%20of%20Spaces%20with%20Affine%20Connection%20to%20Two%20Symmetric%20Spaces&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Berezovskii,%20V.%20E.&rft.date=2022-03-01&rft.volume=43&rft.issue=3&rft.spage=533&rft.epage=538&rft.pages=533-538&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222060063&rft_dat=%3Cproquest_cross%3E2690237554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690237554&rft_id=info:pmid/&rfr_iscdi=true