Person Re-identification with pose variation aware data augmentation
Person re-identification (Re-ID) aims to match a person of interest across multiple non-overlapping camera views. This is a challenging task, partly because a person captured in surveillance video often undergoes intense pose variations. Consequently, differences in their appearance are typically ob...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-07, Vol.34 (14), p.11817-11830 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11830 |
---|---|
container_issue | 14 |
container_start_page | 11817 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Zhang, Lei Jiang, Na Diao, Qishuai Zhou, Zhong Wu, Wei |
description | Person re-identification (Re-ID) aims to match a person of interest across multiple non-overlapping camera views. This is a challenging task, partly because a person captured in surveillance video often undergoes intense pose variations. Consequently, differences in their appearance are typically obvious. In this paper, we propose a pose variation aware data augmentation (
PA
4
) method, which is composed of a pose transfer generative adversarial network (PTGAN) and person re-identification with improved hard example mining (Pre-HEM). Specifically, PTGAN introduces a similarity measurement module to synthesize realistic person images that are conditional on the pose, and with the original images, form an augmented training dataset. Pre-HEM presents a novel method of using the pose-transferred images with the learned pose transfer model for person Re-ID. It replaces the invalid samples that are caused by pose variations and constrains the proportion of the pose-transferred samples in each mini-batch. We conduct extensive comparative evaluations to demonstrate the advantages and superiority of our proposed method over state-of-the-art approaches on Market-1501, DukeMTMC-reID, and CUHK03 dataset. |
doi_str_mv | 10.1007/s00521-022-07071-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689987626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689987626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f84e21e09ab4ed41743806ec9cb5a7edf7ac7b3f52d90dd4456135fca05cb0f53</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsv4GrAdfTPfWYppV6goIiuQyaXmmJnajJVfBufxSczdgR3rn4453znh4PQKYFzAqAuMoCgBAOlGBQogskemhDOGGYg6n00gYYXW3J2iI5yXgEAl7WYoPm9T7nvqgePo_PdEEO0ZohFeY_Dc7Xps6_eTIo77evTvJvkK2cGU5ntcl2AnXGMDoJ5yf7k907R09X8cXaDF3fXt7PLBbaMNAMONfeUeGhMy73jRHFWg_S2sa0wyrugjFUtC4K6BpzjXEjCRLAGhG0hCDZFZ2PvJvWvW58Hveq3qSsvNZV109RKUllSdEzZ1OecfNCbFNcmfWgC-mcuPc6ly1x6N5cmBWIjlEu4W_r0V_0P9Q0fD264</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689987626</pqid></control><display><type>article</type><title>Person Re-identification with pose variation aware data augmentation</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Lei ; Jiang, Na ; Diao, Qishuai ; Zhou, Zhong ; Wu, Wei</creator><creatorcontrib>Zhang, Lei ; Jiang, Na ; Diao, Qishuai ; Zhou, Zhong ; Wu, Wei</creatorcontrib><description>Person re-identification (Re-ID) aims to match a person of interest across multiple non-overlapping camera views. This is a challenging task, partly because a person captured in surveillance video often undergoes intense pose variations. Consequently, differences in their appearance are typically obvious. In this paper, we propose a pose variation aware data augmentation (
PA
4
) method, which is composed of a pose transfer generative adversarial network (PTGAN) and person re-identification with improved hard example mining (Pre-HEM). Specifically, PTGAN introduces a similarity measurement module to synthesize realistic person images that are conditional on the pose, and with the original images, form an augmented training dataset. Pre-HEM presents a novel method of using the pose-transferred images with the learned pose transfer model for person Re-ID. It replaces the invalid samples that are caused by pose variations and constrains the proportion of the pose-transferred samples in each mini-batch. We conduct extensive comparative evaluations to demonstrate the advantages and superiority of our proposed method over state-of-the-art approaches on Market-1501, DukeMTMC-reID, and CUHK03 dataset.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07071-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data augmentation ; Data Mining and Knowledge Discovery ; Datasets ; Deep learning ; Generative adversarial networks ; Identification ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science ; Surveillance ; Virtual reality</subject><ispartof>Neural computing & applications, 2022-07, Vol.34 (14), p.11817-11830</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f84e21e09ab4ed41743806ec9cb5a7edf7ac7b3f52d90dd4456135fca05cb0f53</citedby><cites>FETCH-LOGICAL-c319t-f84e21e09ab4ed41743806ec9cb5a7edf7ac7b3f52d90dd4456135fca05cb0f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07071-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07071-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Jiang, Na</creatorcontrib><creatorcontrib>Diao, Qishuai</creatorcontrib><creatorcontrib>Zhou, Zhong</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><title>Person Re-identification with pose variation aware data augmentation</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Person re-identification (Re-ID) aims to match a person of interest across multiple non-overlapping camera views. This is a challenging task, partly because a person captured in surveillance video often undergoes intense pose variations. Consequently, differences in their appearance are typically obvious. In this paper, we propose a pose variation aware data augmentation (
PA
4
) method, which is composed of a pose transfer generative adversarial network (PTGAN) and person re-identification with improved hard example mining (Pre-HEM). Specifically, PTGAN introduces a similarity measurement module to synthesize realistic person images that are conditional on the pose, and with the original images, form an augmented training dataset. Pre-HEM presents a novel method of using the pose-transferred images with the learned pose transfer model for person Re-ID. It replaces the invalid samples that are caused by pose variations and constrains the proportion of the pose-transferred samples in each mini-batch. We conduct extensive comparative evaluations to demonstrate the advantages and superiority of our proposed method over state-of-the-art approaches on Market-1501, DukeMTMC-reID, and CUHK03 dataset.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Generative adversarial networks</subject><subject>Identification</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Surveillance</subject><subject>Virtual reality</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKAzEYhYMoWKsv4GrAdfTPfWYppV6goIiuQyaXmmJnajJVfBufxSczdgR3rn4453znh4PQKYFzAqAuMoCgBAOlGBQogskemhDOGGYg6n00gYYXW3J2iI5yXgEAl7WYoPm9T7nvqgePo_PdEEO0ZohFeY_Dc7Xps6_eTIo77evTvJvkK2cGU5ntcl2AnXGMDoJ5yf7k907R09X8cXaDF3fXt7PLBbaMNAMONfeUeGhMy73jRHFWg_S2sa0wyrugjFUtC4K6BpzjXEjCRLAGhG0hCDZFZ2PvJvWvW58Hveq3qSsvNZV109RKUllSdEzZ1OecfNCbFNcmfWgC-mcuPc6ly1x6N5cmBWIjlEu4W_r0V_0P9Q0fD264</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhang, Lei</creator><creator>Jiang, Na</creator><creator>Diao, Qishuai</creator><creator>Zhou, Zhong</creator><creator>Wu, Wei</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220701</creationdate><title>Person Re-identification with pose variation aware data augmentation</title><author>Zhang, Lei ; Jiang, Na ; Diao, Qishuai ; Zhou, Zhong ; Wu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f84e21e09ab4ed41743806ec9cb5a7edf7ac7b3f52d90dd4456135fca05cb0f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Generative adversarial networks</topic><topic>Identification</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Surveillance</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Jiang, Na</creatorcontrib><creatorcontrib>Diao, Qishuai</creatorcontrib><creatorcontrib>Zhou, Zhong</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Jiang, Na</au><au>Diao, Qishuai</au><au>Zhou, Zhong</au><au>Wu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Person Re-identification with pose variation aware data augmentation</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>14</issue><spage>11817</spage><epage>11830</epage><pages>11817-11830</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Person re-identification (Re-ID) aims to match a person of interest across multiple non-overlapping camera views. This is a challenging task, partly because a person captured in surveillance video often undergoes intense pose variations. Consequently, differences in their appearance are typically obvious. In this paper, we propose a pose variation aware data augmentation (
PA
4
) method, which is composed of a pose transfer generative adversarial network (PTGAN) and person re-identification with improved hard example mining (Pre-HEM). Specifically, PTGAN introduces a similarity measurement module to synthesize realistic person images that are conditional on the pose, and with the original images, form an augmented training dataset. Pre-HEM presents a novel method of using the pose-transferred images with the learned pose transfer model for person Re-ID. It replaces the invalid samples that are caused by pose variations and constrains the proportion of the pose-transferred samples in each mini-batch. We conduct extensive comparative evaluations to demonstrate the advantages and superiority of our proposed method over state-of-the-art approaches on Market-1501, DukeMTMC-reID, and CUHK03 dataset.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07071-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-07, Vol.34 (14), p.11817-11830 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2689987626 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data augmentation Data Mining and Knowledge Discovery Datasets Deep learning Generative adversarial networks Identification Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science Surveillance Virtual reality |
title | Person Re-identification with pose variation aware data augmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Person%20Re-identification%20with%20pose%20variation%C2%A0aware%20data%20augmentation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Zhang,%20Lei&rft.date=2022-07-01&rft.volume=34&rft.issue=14&rft.spage=11817&rft.epage=11830&rft.pages=11817-11830&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07071-1&rft_dat=%3Cproquest_cross%3E2689987626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689987626&rft_id=info:pmid/&rfr_iscdi=true |