Binary cross-entropy with dynamical clipping
We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cro...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-07, Vol.34 (14), p.12029-12041 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12041 |
---|---|
container_issue | 14 |
container_start_page | 12029 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Hurtik, Petr Tomasiello, Stefania Hula, Jan Hynar, David |
description | We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an
α
-calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy |
doi_str_mv | 10.1007/s00521-022-07091-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689987360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689987360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRWDEc3-0RKm5SJRaYLTd2Sqo0CXYqmrfHNEhsTGc4338uH0KXBG4IgLpNAIISDJRiUGAI3h-hGeGMYQZCH6MZGJ7bkrNTdJbSBgC41GKGru_r1sWxKGOXEg7tELt-LL7q4aPwY-u2demaomzqvq_b9Tk6qVyTwsVvnaP3x4e3xTNevj69LO6WuKTcDHilqPKcC2kIuFXwFRGeCekqDUw7LyQppSpp5ZjXJIgMeS69NqAlE14RNkdX09w-dp-7kAa76XaxzSstldoYrZiETNGJOtweQ2X7WG_zM5aA_bFiJys2W7EHK3afQ2wKpQy36xD_Rv-T-gZ4L2Qx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689987360</pqid></control><display><type>article</type><title>Binary cross-entropy with dynamical clipping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hurtik, Petr ; Tomasiello, Stefania ; Hula, Jan ; Hynar, David</creator><creatorcontrib>Hurtik, Petr ; Tomasiello, Stefania ; Hula, Jan ; Hynar, David</creatorcontrib><description>We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an
α
-calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07091-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Entropy ; Image classification ; Image Processing and Computer Vision ; Labels ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Training</subject><ispartof>Neural computing & applications, 2022-07, Vol.34 (14), p.12029-12041</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</citedby><cites>FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</cites><orcidid>0000-0003-4349-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07091-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07091-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hurtik, Petr</creatorcontrib><creatorcontrib>Tomasiello, Stefania</creatorcontrib><creatorcontrib>Hula, Jan</creatorcontrib><creatorcontrib>Hynar, David</creatorcontrib><title>Binary cross-entropy with dynamical clipping</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an
α
-calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Entropy</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Labels</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Training</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyRWDEc3-0RKm5SJRaYLTd2Sqo0CXYqmrfHNEhsTGc4338uH0KXBG4IgLpNAIISDJRiUGAI3h-hGeGMYQZCH6MZGJ7bkrNTdJbSBgC41GKGru_r1sWxKGOXEg7tELt-LL7q4aPwY-u2demaomzqvq_b9Tk6qVyTwsVvnaP3x4e3xTNevj69LO6WuKTcDHilqPKcC2kIuFXwFRGeCekqDUw7LyQppSpp5ZjXJIgMeS69NqAlE14RNkdX09w-dp-7kAa76XaxzSstldoYrZiETNGJOtweQ2X7WG_zM5aA_bFiJys2W7EHK3afQ2wKpQy36xD_Rv-T-gZ4L2Qx</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Hurtik, Petr</creator><creator>Tomasiello, Stefania</creator><creator>Hula, Jan</creator><creator>Hynar, David</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4349-9705</orcidid></search><sort><creationdate>20220701</creationdate><title>Binary cross-entropy with dynamical clipping</title><author>Hurtik, Petr ; Tomasiello, Stefania ; Hula, Jan ; Hynar, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Entropy</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Labels</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurtik, Petr</creatorcontrib><creatorcontrib>Tomasiello, Stefania</creatorcontrib><creatorcontrib>Hula, Jan</creatorcontrib><creatorcontrib>Hynar, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurtik, Petr</au><au>Tomasiello, Stefania</au><au>Hula, Jan</au><au>Hynar, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary cross-entropy with dynamical clipping</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>14</issue><spage>12029</spage><epage>12041</epage><pages>12029-12041</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an
α
-calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07091-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4349-9705</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-07, Vol.34 (14), p.12029-12041 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2689987360 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Entropy Image classification Image Processing and Computer Vision Labels Neural networks Original Article Probability and Statistics in Computer Science Training |
title | Binary cross-entropy with dynamical clipping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20cross-entropy%20with%20dynamical%20clipping&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Hurtik,%20Petr&rft.date=2022-07-01&rft.volume=34&rft.issue=14&rft.spage=12029&rft.epage=12041&rft.pages=12029-12041&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07091-x&rft_dat=%3Cproquest_cross%3E2689987360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689987360&rft_id=info:pmid/&rfr_iscdi=true |