Binary cross-entropy with dynamical clipping

We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-07, Vol.34 (14), p.12029-12041
Hauptverfasser: Hurtik, Petr, Tomasiello, Stefania, Hula, Jan, Hynar, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12041
container_issue 14
container_start_page 12029
container_title Neural computing & applications
container_volume 34
creator Hurtik, Petr
Tomasiello, Stefania
Hula, Jan
Hynar, David
description We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an α -calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy
doi_str_mv 10.1007/s00521-022-07091-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689987360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689987360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRWDEc3-0RKm5SJRaYLTd2Sqo0CXYqmrfHNEhsTGc4338uH0KXBG4IgLpNAIISDJRiUGAI3h-hGeGMYQZCH6MZGJ7bkrNTdJbSBgC41GKGru_r1sWxKGOXEg7tELt-LL7q4aPwY-u2demaomzqvq_b9Tk6qVyTwsVvnaP3x4e3xTNevj69LO6WuKTcDHilqPKcC2kIuFXwFRGeCekqDUw7LyQppSpp5ZjXJIgMeS69NqAlE14RNkdX09w-dp-7kAa76XaxzSstldoYrZiETNGJOtweQ2X7WG_zM5aA_bFiJys2W7EHK3afQ2wKpQy36xD_Rv-T-gZ4L2Qx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689987360</pqid></control><display><type>article</type><title>Binary cross-entropy with dynamical clipping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hurtik, Petr ; Tomasiello, Stefania ; Hula, Jan ; Hynar, David</creator><creatorcontrib>Hurtik, Petr ; Tomasiello, Stefania ; Hula, Jan ; Hynar, David</creatorcontrib><description>We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an α -calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07091-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Entropy ; Image classification ; Image Processing and Computer Vision ; Labels ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Training</subject><ispartof>Neural computing &amp; applications, 2022-07, Vol.34 (14), p.12029-12041</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</citedby><cites>FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</cites><orcidid>0000-0003-4349-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07091-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07091-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hurtik, Petr</creatorcontrib><creatorcontrib>Tomasiello, Stefania</creatorcontrib><creatorcontrib>Hula, Jan</creatorcontrib><creatorcontrib>Hynar, David</creatorcontrib><title>Binary cross-entropy with dynamical clipping</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an α -calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Entropy</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Labels</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Training</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyRWDEc3-0RKm5SJRaYLTd2Sqo0CXYqmrfHNEhsTGc4338uH0KXBG4IgLpNAIISDJRiUGAI3h-hGeGMYQZCH6MZGJ7bkrNTdJbSBgC41GKGru_r1sWxKGOXEg7tELt-LL7q4aPwY-u2demaomzqvq_b9Tk6qVyTwsVvnaP3x4e3xTNevj69LO6WuKTcDHilqPKcC2kIuFXwFRGeCekqDUw7LyQppSpp5ZjXJIgMeS69NqAlE14RNkdX09w-dp-7kAa76XaxzSstldoYrZiETNGJOtweQ2X7WG_zM5aA_bFiJys2W7EHK3afQ2wKpQy36xD_Rv-T-gZ4L2Qx</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Hurtik, Petr</creator><creator>Tomasiello, Stefania</creator><creator>Hula, Jan</creator><creator>Hynar, David</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4349-9705</orcidid></search><sort><creationdate>20220701</creationdate><title>Binary cross-entropy with dynamical clipping</title><author>Hurtik, Petr ; Tomasiello, Stefania ; Hula, Jan ; Hynar, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b727d4456910abedf15d356af8038ad561c67c2fa3d81e510ad46d8908635d713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Entropy</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Labels</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurtik, Petr</creatorcontrib><creatorcontrib>Tomasiello, Stefania</creatorcontrib><creatorcontrib>Hula, Jan</creatorcontrib><creatorcontrib>Hynar, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurtik, Petr</au><au>Tomasiello, Stefania</au><au>Hula, Jan</au><au>Hynar, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary cross-entropy with dynamical clipping</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>14</issue><spage>12029</spage><epage>12041</epage><pages>12029-12041</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>We investigate the adverse effect of noisy labels in a training dataset on a neural network’s precision in an image classification task. The importance of this research lies in the fact that most datasets include noisy labels. To reduce the impact of noisy labels, we propose to extend the binary cross-entropy by dynamical clipping, which clips all samples’ loss values in a mini-batch by a clipping constant. Such a constant is dynamically determined for every single mini-batch using its statistics. The advantage is the dynamic adaptation to any number of noisy labels in a training dataset. Thanks to that, the proposed binary cross-entropy with dynamical clipping can be used in any model utilizing cross-entropy or focal loss, including pre-trained models. We prove that the proposed loss function is an α -calibrated classification loss, implying consistency and robustness to noise misclassification in more general asymmetric problems. We demonstrate our loss function’s usefulness on Fashion MNIST, CIFAR-10, CIFAR-100 datasets, where we heuristically create training data with noisy labels and achieve a nice performance boost compared to the standard binary cross-entropy. These results are also confirmed in the second experiment, where we use a trained model on Google Images to classify the ImageWoof dataset, and the third experiment, where we deal with the WebVision and ANIMAL-10N datasets. We also show that the proposed technique yields significantly better performance than the gradient clipping. Code: gitlab.com/irafm-ai/clipping_cross_entropy</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07091-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4349-9705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-07, Vol.34 (14), p.12029-12041
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2689987360
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Entropy
Image classification
Image Processing and Computer Vision
Labels
Neural networks
Original Article
Probability and Statistics in Computer Science
Training
title Binary cross-entropy with dynamical clipping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20cross-entropy%20with%20dynamical%20clipping&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Hurtik,%20Petr&rft.date=2022-07-01&rft.volume=34&rft.issue=14&rft.spage=12029&rft.epage=12041&rft.pages=12029-12041&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07091-x&rft_dat=%3Cproquest_cross%3E2689987360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689987360&rft_id=info:pmid/&rfr_iscdi=true