Recommending API Function Calls and Code Snippets to Support Software Development
Software development activity has reached a high degree of complexity, guided by the heterogeneity of the components, data sources, and tasks. The proliferation of open-source software (OSS) repositories has stressed the need to reuse available software artifacts efficiently. To this aim, it is nece...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on software engineering 2022-07, Vol.48 (7), p.2417-2438 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2438 |
---|---|
container_issue | 7 |
container_start_page | 2417 |
container_title | IEEE transactions on software engineering |
container_volume | 48 |
creator | Nguyen, Phuong T. Di Rocco, Juri Di Sipio, Claudio Di Ruscio, Davide Di Penta, Massimiliano |
description | Software development activity has reached a high degree of complexity, guided by the heterogeneity of the components, data sources, and tasks. The proliferation of open-source software (OSS) repositories has stressed the need to reuse available software artifacts efficiently. To this aim, it is necessary to explore approaches to mine data from software repositories and leverage it to produce helpful recommendations. We designed and implemented FOCUS as a novel approach to provide developers with API calls and source code while they are programming. The system works on the basis of a context-aware collaborative filtering technique to extract API usages from OSS projects. In this work, we show the suitability of FOCUS for Android programming by evaluating it on a dataset of 2,600 mobile apps. The empirical evaluation results show that our approach outperforms two state-of-the-art API recommenders, UP-Miner and PAM, in terms of prediction accuracy. We also point out that there is no significant relationship between the categories for apps defined in Google Play and their API usages. Finally, we show that participants of a user study positively perceive the API and source code recommended by FOCUS as relevant to the current development context. |
doi_str_mv | 10.1109/TSE.2021.3059907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2689808337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359479</ieee_id><sourcerecordid>2689808337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b9783e917bd658938ae967fabdc0e49084f8162f820f524e0177ffa6d1af1ad63</originalsourceid><addsrcrecordid>eNo9kN9LwzAUhYMoOKfvgi8BnztvkrZJHkfddDDwR-dzydob6eiamqaK_70dGz7dl--cc_kIuWUwYwz0wyZfzDhwNhOQaA3yjEyYFjoSCYdzMgHQKkoSpS_JVd_vACCRMpmQt3cs3X6PbVW3n3T-uqLLoS1D7VqamabpqWkrmrkKad7WXYehp8HRfOg65wPNnQ0_xiN9xG9sXDf2hGtyYU3T483pTsnHcrHJnqP1y9Mqm6-jkmsWoq2WSqBmclul41tCGdSptGZblYCxBhVbxVJuFQeb8BiBSWmtSStmLDNVKqbk_tjbefc1YB-KnRt8O04WPFVagRJCjhQcqdK7vvdoi87Xe-N_CwbFQVwxiisO4oqTuDFyd4zUiPiPa5HoWGrxB3aVaSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689808337</pqid></control><display><type>article</type><title>Recommending API Function Calls and Code Snippets to Support Software Development</title><source>IEEE Electronic Library (IEL)</source><creator>Nguyen, Phuong T. ; Di Rocco, Juri ; Di Sipio, Claudio ; Di Ruscio, Davide ; Di Penta, Massimiliano</creator><creatorcontrib>Nguyen, Phuong T. ; Di Rocco, Juri ; Di Sipio, Claudio ; Di Ruscio, Davide ; Di Penta, Massimiliano</creatorcontrib><description>Software development activity has reached a high degree of complexity, guided by the heterogeneity of the components, data sources, and tasks. The proliferation of open-source software (OSS) repositories has stressed the need to reuse available software artifacts efficiently. To this aim, it is necessary to explore approaches to mine data from software repositories and leverage it to produce helpful recommendations. We designed and implemented FOCUS as a novel approach to provide developers with API calls and source code while they are programming. The system works on the basis of a context-aware collaborative filtering technique to extract API usages from OSS projects. In this work, we show the suitability of FOCUS for Android programming by evaluating it on a dataset of 2,600 mobile apps. The empirical evaluation results show that our approach outperforms two state-of-the-art API recommenders, UP-Miner and PAM, in terms of prediction accuracy. We also point out that there is no significant relationship between the categories for apps defined in Google Play and their API usages. Finally, we show that participants of a user study positively perceive the API and source code recommended by FOCUS as relevant to the current development context.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2021.3059907</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>android programming ; API calls ; Application programming interface ; Applications programs ; Computer programming ; Context ; Data mining ; Documentation ; Heterogeneity ; Libraries ; Mobile computing ; Open source software ; Recommender systems ; Repositories ; Software development ; Software engineering ; Software reuse ; Source code ; source code recommendations ; Task analysis</subject><ispartof>IEEE transactions on software engineering, 2022-07, Vol.48 (7), p.2417-2438</ispartof><rights>Copyright IEEE Computer Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b9783e917bd658938ae967fabdc0e49084f8162f820f524e0177ffa6d1af1ad63</citedby><cites>FETCH-LOGICAL-c291t-b9783e917bd658938ae967fabdc0e49084f8162f820f524e0177ffa6d1af1ad63</cites><orcidid>0000-0002-3666-4162 ; 0000-0002-0340-9747 ; 0000-0002-5077-6793 ; 0000-0002-7909-3902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Phuong T.</creatorcontrib><creatorcontrib>Di Rocco, Juri</creatorcontrib><creatorcontrib>Di Sipio, Claudio</creatorcontrib><creatorcontrib>Di Ruscio, Davide</creatorcontrib><creatorcontrib>Di Penta, Massimiliano</creatorcontrib><title>Recommending API Function Calls and Code Snippets to Support Software Development</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Software development activity has reached a high degree of complexity, guided by the heterogeneity of the components, data sources, and tasks. The proliferation of open-source software (OSS) repositories has stressed the need to reuse available software artifacts efficiently. To this aim, it is necessary to explore approaches to mine data from software repositories and leverage it to produce helpful recommendations. We designed and implemented FOCUS as a novel approach to provide developers with API calls and source code while they are programming. The system works on the basis of a context-aware collaborative filtering technique to extract API usages from OSS projects. In this work, we show the suitability of FOCUS for Android programming by evaluating it on a dataset of 2,600 mobile apps. The empirical evaluation results show that our approach outperforms two state-of-the-art API recommenders, UP-Miner and PAM, in terms of prediction accuracy. We also point out that there is no significant relationship between the categories for apps defined in Google Play and their API usages. Finally, we show that participants of a user study positively perceive the API and source code recommended by FOCUS as relevant to the current development context.</description><subject>android programming</subject><subject>API calls</subject><subject>Application programming interface</subject><subject>Applications programs</subject><subject>Computer programming</subject><subject>Context</subject><subject>Data mining</subject><subject>Documentation</subject><subject>Heterogeneity</subject><subject>Libraries</subject><subject>Mobile computing</subject><subject>Open source software</subject><subject>Recommender systems</subject><subject>Repositories</subject><subject>Software development</subject><subject>Software engineering</subject><subject>Software reuse</subject><subject>Source code</subject><subject>source code recommendations</subject><subject>Task analysis</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAUhYMoOKfvgi8BnztvkrZJHkfddDDwR-dzydob6eiamqaK_70dGz7dl--cc_kIuWUwYwz0wyZfzDhwNhOQaA3yjEyYFjoSCYdzMgHQKkoSpS_JVd_vACCRMpmQt3cs3X6PbVW3n3T-uqLLoS1D7VqamabpqWkrmrkKad7WXYehp8HRfOg65wPNnQ0_xiN9xG9sXDf2hGtyYU3T483pTsnHcrHJnqP1y9Mqm6-jkmsWoq2WSqBmclul41tCGdSptGZblYCxBhVbxVJuFQeb8BiBSWmtSStmLDNVKqbk_tjbefc1YB-KnRt8O04WPFVagRJCjhQcqdK7vvdoi87Xe-N_CwbFQVwxiisO4oqTuDFyd4zUiPiPa5HoWGrxB3aVaSQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Nguyen, Phuong T.</creator><creator>Di Rocco, Juri</creator><creator>Di Sipio, Claudio</creator><creator>Di Ruscio, Davide</creator><creator>Di Penta, Massimiliano</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-3666-4162</orcidid><orcidid>https://orcid.org/0000-0002-0340-9747</orcidid><orcidid>https://orcid.org/0000-0002-5077-6793</orcidid><orcidid>https://orcid.org/0000-0002-7909-3902</orcidid></search><sort><creationdate>20220701</creationdate><title>Recommending API Function Calls and Code Snippets to Support Software Development</title><author>Nguyen, Phuong T. ; Di Rocco, Juri ; Di Sipio, Claudio ; Di Ruscio, Davide ; Di Penta, Massimiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b9783e917bd658938ae967fabdc0e49084f8162f820f524e0177ffa6d1af1ad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>android programming</topic><topic>API calls</topic><topic>Application programming interface</topic><topic>Applications programs</topic><topic>Computer programming</topic><topic>Context</topic><topic>Data mining</topic><topic>Documentation</topic><topic>Heterogeneity</topic><topic>Libraries</topic><topic>Mobile computing</topic><topic>Open source software</topic><topic>Recommender systems</topic><topic>Repositories</topic><topic>Software development</topic><topic>Software engineering</topic><topic>Software reuse</topic><topic>Source code</topic><topic>source code recommendations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Phuong T.</creatorcontrib><creatorcontrib>Di Rocco, Juri</creatorcontrib><creatorcontrib>Di Sipio, Claudio</creatorcontrib><creatorcontrib>Di Ruscio, Davide</creatorcontrib><creatorcontrib>Di Penta, Massimiliano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Phuong T.</au><au>Di Rocco, Juri</au><au>Di Sipio, Claudio</au><au>Di Ruscio, Davide</au><au>Di Penta, Massimiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommending API Function Calls and Code Snippets to Support Software Development</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>48</volume><issue>7</issue><spage>2417</spage><epage>2438</epage><pages>2417-2438</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Software development activity has reached a high degree of complexity, guided by the heterogeneity of the components, data sources, and tasks. The proliferation of open-source software (OSS) repositories has stressed the need to reuse available software artifacts efficiently. To this aim, it is necessary to explore approaches to mine data from software repositories and leverage it to produce helpful recommendations. We designed and implemented FOCUS as a novel approach to provide developers with API calls and source code while they are programming. The system works on the basis of a context-aware collaborative filtering technique to extract API usages from OSS projects. In this work, we show the suitability of FOCUS for Android programming by evaluating it on a dataset of 2,600 mobile apps. The empirical evaluation results show that our approach outperforms two state-of-the-art API recommenders, UP-Miner and PAM, in terms of prediction accuracy. We also point out that there is no significant relationship between the categories for apps defined in Google Play and their API usages. Finally, we show that participants of a user study positively perceive the API and source code recommended by FOCUS as relevant to the current development context.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2021.3059907</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3666-4162</orcidid><orcidid>https://orcid.org/0000-0002-0340-9747</orcidid><orcidid>https://orcid.org/0000-0002-5077-6793</orcidid><orcidid>https://orcid.org/0000-0002-7909-3902</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-5589 |
ispartof | IEEE transactions on software engineering, 2022-07, Vol.48 (7), p.2417-2438 |
issn | 0098-5589 1939-3520 |
language | eng |
recordid | cdi_proquest_journals_2689808337 |
source | IEEE Electronic Library (IEL) |
subjects | android programming API calls Application programming interface Applications programs Computer programming Context Data mining Documentation Heterogeneity Libraries Mobile computing Open source software Recommender systems Repositories Software development Software engineering Software reuse Source code source code recommendations Task analysis |
title | Recommending API Function Calls and Code Snippets to Support Software Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommending%20API%20Function%20Calls%20and%20Code%20Snippets%20to%20Support%20Software%20Development&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Nguyen,%20Phuong%20T.&rft.date=2022-07-01&rft.volume=48&rft.issue=7&rft.spage=2417&rft.epage=2438&rft.pages=2417-2438&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2021.3059907&rft_dat=%3Cproquest_RIE%3E2689808337%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689808337&rft_id=info:pmid/&rft_ieee_id=9359479&rfr_iscdi=true |