GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images
Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Yang, Huizhang Zhang, Tao He, Yaomin Dan, Yihua Yin, Junjun Ma, Benteng Yang, Jian |
description | Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to N \times N -pixel image is \mathcal {O}(N^{2}) . In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of 10\,000 \times 10\,000 ), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images. |
doi_str_mv | 10.1109/TGRS.2022.3188151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2689806035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9813736</ieee_id><sourcerecordid>2689806035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKc_QLwEPHcmTdImxzFdHQwmczuHNP0yOrZmJtnBf2_Lhqfv8D7v-8GD0DMlE0qJettU6-9JTvJ8wqiUVNAbNKJCyIwUnN-iEaGqyHKp8nv0EOOeEMoFLUcIqq9ttgotdAka_A6x3XURe4dnvovJdAnPzSECnh5MOOK1SdBDCWzyIWLnQx_HhDcm7CBdk9Z3uO16tjEBL45mB_ER3blh5ul6x2g7_9jMPrPlqlrMpsvM5oqlzHLbWEGs4rZuQElZ8oaXhaslcX3galClIE5JC9A4Krg1lEkuaymMaErLxuj1snsK_ucMMem9P4euf6nzQipJCsJET9ELZYOPMYDTp9AeTfjVlOjBph5s6sGmvtrsOy-XTgsA_7ySlJWsYH_vsXEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689806035</pqid></control><display><type>article</type><title>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Huizhang ; Zhang, Tao ; He, Yaomin ; Dan, Yihua ; Yin, Junjun ; Ma, Benteng ; Yang, Jian</creator><creatorcontrib>Yang, Huizhang ; Zhang, Tao ; He, Yaomin ; Dan, Yihua ; Yin, Junjun ; Ma, Benteng ; Yang, Jian</creatorcontrib><description><![CDATA[Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to <inline-formula> <tex-math notation="LaTeX">N \times N </tex-math></inline-formula>-pixel image is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula>. In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of <inline-formula> <tex-math notation="LaTeX">10\,000 \times 10\,000 </tex-math></inline-formula>), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3188151</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boolean algebra ; Clutter ; Constant false alarm rate ; Constant false alarm rate (CFAR) ; Convolution ; Detection ; Detectors ; Doppler sonar ; False alarms ; Graphics ; graphics processing unit (GPU) ; Graphics processing units ; Mathematical analysis ; Object detection ; Pixels ; Radar ; Radar detection ; radar image ; Radar imaging ; SAR (radar) ; Sensors ; Spaceborne radar ; Spacecraft ; Statistical methods ; Synthetic aperture radar ; Target detection ; Tensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</citedby><cites>FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</cites><orcidid>0000-0001-9725-088X ; 0000-0002-7192-5153 ; 0000-0002-4572-8834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9813736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9813736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>He, Yaomin</creatorcontrib><creatorcontrib>Dan, Yihua</creatorcontrib><creatorcontrib>Yin, Junjun</creatorcontrib><creatorcontrib>Ma, Benteng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to <inline-formula> <tex-math notation="LaTeX">N \times N </tex-math></inline-formula>-pixel image is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula>. In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of <inline-formula> <tex-math notation="LaTeX">10\,000 \times 10\,000 </tex-math></inline-formula>), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images.]]></description><subject>Boolean algebra</subject><subject>Clutter</subject><subject>Constant false alarm rate</subject><subject>Constant false alarm rate (CFAR)</subject><subject>Convolution</subject><subject>Detection</subject><subject>Detectors</subject><subject>Doppler sonar</subject><subject>False alarms</subject><subject>Graphics</subject><subject>graphics processing unit (GPU)</subject><subject>Graphics processing units</subject><subject>Mathematical analysis</subject><subject>Object detection</subject><subject>Pixels</subject><subject>Radar</subject><subject>Radar detection</subject><subject>radar image</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Sensors</subject><subject>Spaceborne radar</subject><subject>Spacecraft</subject><subject>Statistical methods</subject><subject>Synthetic aperture radar</subject><subject>Target detection</subject><subject>Tensors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKc_QLwEPHcmTdImxzFdHQwmczuHNP0yOrZmJtnBf2_Lhqfv8D7v-8GD0DMlE0qJettU6-9JTvJ8wqiUVNAbNKJCyIwUnN-iEaGqyHKp8nv0EOOeEMoFLUcIqq9ttgotdAka_A6x3XURe4dnvovJdAnPzSECnh5MOOK1SdBDCWzyIWLnQx_HhDcm7CBdk9Z3uO16tjEBL45mB_ER3blh5ul6x2g7_9jMPrPlqlrMpsvM5oqlzHLbWEGs4rZuQElZ8oaXhaslcX3galClIE5JC9A4Krg1lEkuaymMaErLxuj1snsK_ucMMem9P4euf6nzQipJCsJET9ELZYOPMYDTp9AeTfjVlOjBph5s6sGmvtrsOy-XTgsA_7ySlJWsYH_vsXEO</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yang, Huizhang</creator><creator>Zhang, Tao</creator><creator>He, Yaomin</creator><creator>Dan, Yihua</creator><creator>Yin, Junjun</creator><creator>Ma, Benteng</creator><creator>Yang, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-7192-5153</orcidid><orcidid>https://orcid.org/0000-0002-4572-8834</orcidid></search><sort><creationdate>2022</creationdate><title>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</title><author>Yang, Huizhang ; Zhang, Tao ; He, Yaomin ; Dan, Yihua ; Yin, Junjun ; Ma, Benteng ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boolean algebra</topic><topic>Clutter</topic><topic>Constant false alarm rate</topic><topic>Constant false alarm rate (CFAR)</topic><topic>Convolution</topic><topic>Detection</topic><topic>Detectors</topic><topic>Doppler sonar</topic><topic>False alarms</topic><topic>Graphics</topic><topic>graphics processing unit (GPU)</topic><topic>Graphics processing units</topic><topic>Mathematical analysis</topic><topic>Object detection</topic><topic>Pixels</topic><topic>Radar</topic><topic>Radar detection</topic><topic>radar image</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Sensors</topic><topic>Spaceborne radar</topic><topic>Spacecraft</topic><topic>Statistical methods</topic><topic>Synthetic aperture radar</topic><topic>Target detection</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>He, Yaomin</creatorcontrib><creatorcontrib>Dan, Yihua</creatorcontrib><creatorcontrib>Yin, Junjun</creatorcontrib><creatorcontrib>Ma, Benteng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Huizhang</au><au>Zhang, Tao</au><au>He, Yaomin</au><au>Dan, Yihua</au><au>Yin, Junjun</au><au>Ma, Benteng</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to <inline-formula> <tex-math notation="LaTeX">N \times N </tex-math></inline-formula>-pixel image is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula>. In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of <inline-formula> <tex-math notation="LaTeX">10\,000 \times 10\,000 </tex-math></inline-formula>), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3188151</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-7192-5153</orcidid><orcidid>https://orcid.org/0000-0002-4572-8834</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2689806035 |
source | IEEE Electronic Library (IEL) |
subjects | Boolean algebra Clutter Constant false alarm rate Constant false alarm rate (CFAR) Convolution Detection Detectors Doppler sonar False alarms Graphics graphics processing unit (GPU) Graphics processing units Mathematical analysis Object detection Pixels Radar Radar detection radar image Radar imaging SAR (radar) Sensors Spaceborne radar Spacecraft Statistical methods Synthetic aperture radar Target detection Tensors |
title | GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU-Oriented%20Designs%20of%20Constant%20False%20Alarm%20Rate%20Detectors%20for%20Fast%20Target%20Detection%20in%20Radar%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Huizhang&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3188151&rft_dat=%3Cproquest_RIE%3E2689806035%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689806035&rft_id=info:pmid/&rft_ieee_id=9813736&rfr_iscdi=true |