GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images

Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14
Hauptverfasser: Yang, Huizhang, Zhang, Tao, He, Yaomin, Dan, Yihua, Yin, Junjun, Ma, Benteng, Yang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Yang, Huizhang
Zhang, Tao
He, Yaomin
Dan, Yihua
Yin, Junjun
Ma, Benteng
Yang, Jian
description Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to N \times N -pixel image is \mathcal {O}(N^{2}) . In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of 10\,000 \times 10\,000 ), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images.
doi_str_mv 10.1109/TGRS.2022.3188151
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2689806035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9813736</ieee_id><sourcerecordid>2689806035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKc_QLwEPHcmTdImxzFdHQwmczuHNP0yOrZmJtnBf2_Lhqfv8D7v-8GD0DMlE0qJettU6-9JTvJ8wqiUVNAbNKJCyIwUnN-iEaGqyHKp8nv0EOOeEMoFLUcIqq9ttgotdAka_A6x3XURe4dnvovJdAnPzSECnh5MOOK1SdBDCWzyIWLnQx_HhDcm7CBdk9Z3uO16tjEBL45mB_ER3blh5ul6x2g7_9jMPrPlqlrMpsvM5oqlzHLbWEGs4rZuQElZ8oaXhaslcX3galClIE5JC9A4Krg1lEkuaymMaErLxuj1snsK_ucMMem9P4euf6nzQipJCsJET9ELZYOPMYDTp9AeTfjVlOjBph5s6sGmvtrsOy-XTgsA_7ySlJWsYH_vsXEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689806035</pqid></control><display><type>article</type><title>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Huizhang ; Zhang, Tao ; He, Yaomin ; Dan, Yihua ; Yin, Junjun ; Ma, Benteng ; Yang, Jian</creator><creatorcontrib>Yang, Huizhang ; Zhang, Tao ; He, Yaomin ; Dan, Yihua ; Yin, Junjun ; Ma, Benteng ; Yang, Jian</creatorcontrib><description><![CDATA[Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to <inline-formula> <tex-math notation="LaTeX">N \times N </tex-math></inline-formula>-pixel image is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula>. In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of <inline-formula> <tex-math notation="LaTeX">10\,000 \times 10\,000 </tex-math></inline-formula>), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3188151</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boolean algebra ; Clutter ; Constant false alarm rate ; Constant false alarm rate (CFAR) ; Convolution ; Detection ; Detectors ; Doppler sonar ; False alarms ; Graphics ; graphics processing unit (GPU) ; Graphics processing units ; Mathematical analysis ; Object detection ; Pixels ; Radar ; Radar detection ; radar image ; Radar imaging ; SAR (radar) ; Sensors ; Spaceborne radar ; Spacecraft ; Statistical methods ; Synthetic aperture radar ; Target detection ; Tensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</citedby><cites>FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</cites><orcidid>0000-0001-9725-088X ; 0000-0002-7192-5153 ; 0000-0002-4572-8834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9813736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9813736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>He, Yaomin</creatorcontrib><creatorcontrib>Dan, Yihua</creatorcontrib><creatorcontrib>Yin, Junjun</creatorcontrib><creatorcontrib>Ma, Benteng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to <inline-formula> <tex-math notation="LaTeX">N \times N </tex-math></inline-formula>-pixel image is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula>. In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of <inline-formula> <tex-math notation="LaTeX">10\,000 \times 10\,000 </tex-math></inline-formula>), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images.]]></description><subject>Boolean algebra</subject><subject>Clutter</subject><subject>Constant false alarm rate</subject><subject>Constant false alarm rate (CFAR)</subject><subject>Convolution</subject><subject>Detection</subject><subject>Detectors</subject><subject>Doppler sonar</subject><subject>False alarms</subject><subject>Graphics</subject><subject>graphics processing unit (GPU)</subject><subject>Graphics processing units</subject><subject>Mathematical analysis</subject><subject>Object detection</subject><subject>Pixels</subject><subject>Radar</subject><subject>Radar detection</subject><subject>radar image</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Sensors</subject><subject>Spaceborne radar</subject><subject>Spacecraft</subject><subject>Statistical methods</subject><subject>Synthetic aperture radar</subject><subject>Target detection</subject><subject>Tensors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKc_QLwEPHcmTdImxzFdHQwmczuHNP0yOrZmJtnBf2_Lhqfv8D7v-8GD0DMlE0qJettU6-9JTvJ8wqiUVNAbNKJCyIwUnN-iEaGqyHKp8nv0EOOeEMoFLUcIqq9ttgotdAka_A6x3XURe4dnvovJdAnPzSECnh5MOOK1SdBDCWzyIWLnQx_HhDcm7CBdk9Z3uO16tjEBL45mB_ER3blh5ul6x2g7_9jMPrPlqlrMpsvM5oqlzHLbWEGs4rZuQElZ8oaXhaslcX3galClIE5JC9A4Krg1lEkuaymMaErLxuj1snsK_ucMMem9P4euf6nzQipJCsJET9ELZYOPMYDTp9AeTfjVlOjBph5s6sGmvtrsOy-XTgsA_7ySlJWsYH_vsXEO</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yang, Huizhang</creator><creator>Zhang, Tao</creator><creator>He, Yaomin</creator><creator>Dan, Yihua</creator><creator>Yin, Junjun</creator><creator>Ma, Benteng</creator><creator>Yang, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-7192-5153</orcidid><orcidid>https://orcid.org/0000-0002-4572-8834</orcidid></search><sort><creationdate>2022</creationdate><title>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</title><author>Yang, Huizhang ; Zhang, Tao ; He, Yaomin ; Dan, Yihua ; Yin, Junjun ; Ma, Benteng ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c4cdc50c94cbde98874d476fb80fdc5fbe9750f98ceedf154ca13848b85a5d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boolean algebra</topic><topic>Clutter</topic><topic>Constant false alarm rate</topic><topic>Constant false alarm rate (CFAR)</topic><topic>Convolution</topic><topic>Detection</topic><topic>Detectors</topic><topic>Doppler sonar</topic><topic>False alarms</topic><topic>Graphics</topic><topic>graphics processing unit (GPU)</topic><topic>Graphics processing units</topic><topic>Mathematical analysis</topic><topic>Object detection</topic><topic>Pixels</topic><topic>Radar</topic><topic>Radar detection</topic><topic>radar image</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Sensors</topic><topic>Spaceborne radar</topic><topic>Spacecraft</topic><topic>Statistical methods</topic><topic>Synthetic aperture radar</topic><topic>Target detection</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>He, Yaomin</creatorcontrib><creatorcontrib>Dan, Yihua</creatorcontrib><creatorcontrib>Yin, Junjun</creatorcontrib><creatorcontrib>Ma, Benteng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Huizhang</au><au>Zhang, Tao</au><au>He, Yaomin</au><au>Dan, Yihua</au><au>Yin, Junjun</au><au>Ma, Benteng</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Constant false alarm rate (CFAR) detector is a class of widely used methods for target detection in radar images. Classical CFAR detectors perform target detection on a pixel-by-pixel basis using certain sliding windows for estimating clutter statistics, which run fast for small images. However, as the image size gets large, the time cost of these detectors will increase significantly since the time complexity with respect to <inline-formula> <tex-math notation="LaTeX">N \times N </tex-math></inline-formula>-pixel image is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula>. In practice, radar images, such as those in synthetic aperture radar (SAR), usually have very large numbers of pixels (which can be on the order of <inline-formula> <tex-math notation="LaTeX">10\,000 \times 10\,000 </tex-math></inline-formula>), making the classical CFAR detectors very time-consuming when applied to these images. In this article, we present graphics processing unit (GPU)-oriented Designs for speeding up CFAR detectors, including smallest/greatest-of CFAR and order-statistic CFAR. The proposed designs implement CFAR detectors via tensor operations, including tensor convolution, shift, and Boolean operation, which can be fast operated by GPU. Experimental results show that the proposed GPU-oriented CFAR detectors running on a high-performance Nvidia RTX 3090 GPU can be thousands of times faster than the classical CFAR detectors, and realize real-time target detection in large-size radar images. Examples using SAR and range-Doppler images are provided as illustrative applications of the proposed GPU CFAR detectors to target detection in radar images.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3188151</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-7192-5153</orcidid><orcidid>https://orcid.org/0000-0002-4572-8834</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2689806035
source IEEE Electronic Library (IEL)
subjects Boolean algebra
Clutter
Constant false alarm rate
Constant false alarm rate (CFAR)
Convolution
Detection
Detectors
Doppler sonar
False alarms
Graphics
graphics processing unit (GPU)
Graphics processing units
Mathematical analysis
Object detection
Pixels
Radar
Radar detection
radar image
Radar imaging
SAR (radar)
Sensors
Spaceborne radar
Spacecraft
Statistical methods
Synthetic aperture radar
Target detection
Tensors
title GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast Target Detection in Radar Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU-Oriented%20Designs%20of%20Constant%20False%20Alarm%20Rate%20Detectors%20for%20Fast%20Target%20Detection%20in%20Radar%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Huizhang&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3188151&rft_dat=%3Cproquest_RIE%3E2689806035%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689806035&rft_id=info:pmid/&rft_ieee_id=9813736&rfr_iscdi=true