Temperature‐ and pressure‐dependent phonon dynamics properties of gallium selenide telluride

Understanding the thermodynamic properties of materials is a fundamental issue in physics, and its knowledge is crucial for targeting a specific material for possible applications. In this work, we report a temperature‐ and pressure‐dependent Raman study of bulk GaSe0.5Te0.5 alloy, besides their rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2022-07, Vol.53 (7), p.1275-1284
Hauptverfasser: Oliveira, Victor V., Leite, Fábio F., Silva, Francisco W.N., Oliveira, Francisco W.C., Araujo, Francisco D.V., Menezes, Alan S., Paraguassu, W., Souza Filho, Antonio G., Viana, Bartolomeu C., Alencar, Rafael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue 7
container_start_page 1275
container_title Journal of Raman spectroscopy
container_volume 53
creator Oliveira, Victor V.
Leite, Fábio F.
Silva, Francisco W.N.
Oliveira, Francisco W.C.
Araujo, Francisco D.V.
Menezes, Alan S.
Paraguassu, W.
Souza Filho, Antonio G.
Viana, Bartolomeu C.
Alencar, Rafael S.
description Understanding the thermodynamic properties of materials is a fundamental issue in physics, and its knowledge is crucial for targeting a specific material for possible applications. In this work, we report a temperature‐ and pressure‐dependent Raman study of bulk GaSe0.5Te0.5 alloy, besides their relevant thermodynamic parameters. Our results show a nonlinear redshift for the A1g and E2g vibrational modes as the temperature increases in the temperature range from 10 to 748 K. Such behavior is well described by considering both thermal expansion and phonon–phonon coupling contributions. By combining density functional theory (DFT) calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated for GaSe0.5Te0.5 alloy. Furthermore, the high‐pressure measurements and DFT calculations, performed in the pressure range from 0 to 26.4 GPa, show a quadratic trend for the ωA1g and ωE2g modes as a function of pressure, with the A1g modes being more compressible than E2g one, that is, ∂ωA1g∂P>∂ωE2g∂P. No structural phase transition is observed until the maximum pressure reached in the experiment. This study took a step forward in the understanding of mechanical and thermal properties related to GaSe0.5Te0.5 alloy, whose determined parameters are important for designing new applications. We present a temperature‐ and pressure‐dependent Raman spectroscopy study of bulk GaSe0.5Te0.5 in order to access its thermal and mechanical properties. By combining DFT calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated.
doi_str_mv 10.1002/jrs.6364
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689688592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689688592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-5dd56343c1a0d3d126bcb9027046fca281637f9aedf5a36dbc5fe7d40a3fdc3e3</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmDRN2ixl8MqAoOM6ZpIT7dBJa9Iis_MRfEafxIx16yon8J0LP0KnlMwoIfnFOsSZYKLYQxNKZJkVnPN9NCGsLDNSVOIQHcW4JoRIKegEvSxh00HQ_RDg-_MLa29xFyDG8W-hA2_B97h7a33rsd16valNTKhNfX0NEbcOv-qmqYcNjtCAry3gHppmCKk6RgdONxFO_t4per6-Ws5vs8XDzd38cpGZXLIi49ZywQpmqCaWWZqLlVlJkpekEM7ovKKClU5qsI5rJuzKcAelLYhmzhoGbIrOxrnpsPcBYq_W7RB8WqlyUUlRVVzmSZ2PyoQ2xgBOdaHe6LBVlKhdfirlp3b5JZqN9KNuYPuvU_ePT7_-BzHcdd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689688592</pqid></control><display><type>article</type><title>Temperature‐ and pressure‐dependent phonon dynamics properties of gallium selenide telluride</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oliveira, Victor V. ; Leite, Fábio F. ; Silva, Francisco W.N. ; Oliveira, Francisco W.C. ; Araujo, Francisco D.V. ; Menezes, Alan S. ; Paraguassu, W. ; Souza Filho, Antonio G. ; Viana, Bartolomeu C. ; Alencar, Rafael S.</creator><creatorcontrib>Oliveira, Victor V. ; Leite, Fábio F. ; Silva, Francisco W.N. ; Oliveira, Francisco W.C. ; Araujo, Francisco D.V. ; Menezes, Alan S. ; Paraguassu, W. ; Souza Filho, Antonio G. ; Viana, Bartolomeu C. ; Alencar, Rafael S.</creatorcontrib><description>Understanding the thermodynamic properties of materials is a fundamental issue in physics, and its knowledge is crucial for targeting a specific material for possible applications. In this work, we report a temperature‐ and pressure‐dependent Raman study of bulk GaSe0.5Te0.5 alloy, besides their relevant thermodynamic parameters. Our results show a nonlinear redshift for the A1g and E2g vibrational modes as the temperature increases in the temperature range from 10 to 748 K. Such behavior is well described by considering both thermal expansion and phonon–phonon coupling contributions. By combining density functional theory (DFT) calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated for GaSe0.5Te0.5 alloy. Furthermore, the high‐pressure measurements and DFT calculations, performed in the pressure range from 0 to 26.4 GPa, show a quadratic trend for the ωA1g and ωE2g modes as a function of pressure, with the A1g modes being more compressible than E2g one, that is, ∂ωA1g∂P&gt;∂ωE2g∂P. No structural phase transition is observed until the maximum pressure reached in the experiment. This study took a step forward in the understanding of mechanical and thermal properties related to GaSe0.5Te0.5 alloy, whose determined parameters are important for designing new applications. We present a temperature‐ and pressure‐dependent Raman spectroscopy study of bulk GaSe0.5Te0.5 in order to access its thermal and mechanical properties. By combining DFT calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.6364</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Anharmonicity ; Bulk modulus ; Compressibility ; Debye temperature ; Density functional theory ; DFT ; Gallium ; gallium selenide telluride ; Gallium selenides ; Gruneisen parameter ; Material properties ; Mathematical analysis ; Phase transitions ; Phonons ; Pressure ; Pressure dependence ; Process parameters ; Raman spectroscopy ; Red shift ; Selenide ; Tellurides ; temperature ; Temperature dependence ; Thermal expansion ; Thermal properties ; Thermodynamic properties ; Thermodynamics ; Vibration mode</subject><ispartof>Journal of Raman spectroscopy, 2022-07, Vol.53 (7), p.1275-1284</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-5dd56343c1a0d3d126bcb9027046fca281637f9aedf5a36dbc5fe7d40a3fdc3e3</citedby><cites>FETCH-LOGICAL-c2934-5dd56343c1a0d3d126bcb9027046fca281637f9aedf5a36dbc5fe7d40a3fdc3e3</cites><orcidid>0000-0003-3802-1168 ; 0000-0003-4980-4694 ; 0000-0003-3256-8867 ; 0000-0002-3462-4423 ; 0000-0003-2149-6335 ; 0000-0002-9992-7564 ; 0000-0002-8817-0156 ; 0000-0002-5207-4269 ; 0000-0002-3241-3059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.6364$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.6364$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Oliveira, Victor V.</creatorcontrib><creatorcontrib>Leite, Fábio F.</creatorcontrib><creatorcontrib>Silva, Francisco W.N.</creatorcontrib><creatorcontrib>Oliveira, Francisco W.C.</creatorcontrib><creatorcontrib>Araujo, Francisco D.V.</creatorcontrib><creatorcontrib>Menezes, Alan S.</creatorcontrib><creatorcontrib>Paraguassu, W.</creatorcontrib><creatorcontrib>Souza Filho, Antonio G.</creatorcontrib><creatorcontrib>Viana, Bartolomeu C.</creatorcontrib><creatorcontrib>Alencar, Rafael S.</creatorcontrib><title>Temperature‐ and pressure‐dependent phonon dynamics properties of gallium selenide telluride</title><title>Journal of Raman spectroscopy</title><description>Understanding the thermodynamic properties of materials is a fundamental issue in physics, and its knowledge is crucial for targeting a specific material for possible applications. In this work, we report a temperature‐ and pressure‐dependent Raman study of bulk GaSe0.5Te0.5 alloy, besides their relevant thermodynamic parameters. Our results show a nonlinear redshift for the A1g and E2g vibrational modes as the temperature increases in the temperature range from 10 to 748 K. Such behavior is well described by considering both thermal expansion and phonon–phonon coupling contributions. By combining density functional theory (DFT) calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated for GaSe0.5Te0.5 alloy. Furthermore, the high‐pressure measurements and DFT calculations, performed in the pressure range from 0 to 26.4 GPa, show a quadratic trend for the ωA1g and ωE2g modes as a function of pressure, with the A1g modes being more compressible than E2g one, that is, ∂ωA1g∂P&gt;∂ωE2g∂P. No structural phase transition is observed until the maximum pressure reached in the experiment. This study took a step forward in the understanding of mechanical and thermal properties related to GaSe0.5Te0.5 alloy, whose determined parameters are important for designing new applications. We present a temperature‐ and pressure‐dependent Raman spectroscopy study of bulk GaSe0.5Te0.5 in order to access its thermal and mechanical properties. By combining DFT calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated.</description><subject>Anharmonicity</subject><subject>Bulk modulus</subject><subject>Compressibility</subject><subject>Debye temperature</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Gallium</subject><subject>gallium selenide telluride</subject><subject>Gallium selenides</subject><subject>Gruneisen parameter</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Pressure</subject><subject>Pressure dependence</subject><subject>Process parameters</subject><subject>Raman spectroscopy</subject><subject>Red shift</subject><subject>Selenide</subject><subject>Tellurides</subject><subject>temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Vibration mode</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmDRN2ixl8MqAoOM6ZpIT7dBJa9Iis_MRfEafxIx16yon8J0LP0KnlMwoIfnFOsSZYKLYQxNKZJkVnPN9NCGsLDNSVOIQHcW4JoRIKegEvSxh00HQ_RDg-_MLa29xFyDG8W-hA2_B97h7a33rsd16valNTKhNfX0NEbcOv-qmqYcNjtCAry3gHppmCKk6RgdONxFO_t4per6-Ws5vs8XDzd38cpGZXLIi49ZywQpmqCaWWZqLlVlJkpekEM7ovKKClU5qsI5rJuzKcAelLYhmzhoGbIrOxrnpsPcBYq_W7RB8WqlyUUlRVVzmSZ2PyoQ2xgBOdaHe6LBVlKhdfirlp3b5JZqN9KNuYPuvU_ePT7_-BzHcdd4</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Oliveira, Victor V.</creator><creator>Leite, Fábio F.</creator><creator>Silva, Francisco W.N.</creator><creator>Oliveira, Francisco W.C.</creator><creator>Araujo, Francisco D.V.</creator><creator>Menezes, Alan S.</creator><creator>Paraguassu, W.</creator><creator>Souza Filho, Antonio G.</creator><creator>Viana, Bartolomeu C.</creator><creator>Alencar, Rafael S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-3802-1168</orcidid><orcidid>https://orcid.org/0000-0003-4980-4694</orcidid><orcidid>https://orcid.org/0000-0003-3256-8867</orcidid><orcidid>https://orcid.org/0000-0002-3462-4423</orcidid><orcidid>https://orcid.org/0000-0003-2149-6335</orcidid><orcidid>https://orcid.org/0000-0002-9992-7564</orcidid><orcidid>https://orcid.org/0000-0002-8817-0156</orcidid><orcidid>https://orcid.org/0000-0002-5207-4269</orcidid><orcidid>https://orcid.org/0000-0002-3241-3059</orcidid></search><sort><creationdate>202207</creationdate><title>Temperature‐ and pressure‐dependent phonon dynamics properties of gallium selenide telluride</title><author>Oliveira, Victor V. ; Leite, Fábio F. ; Silva, Francisco W.N. ; Oliveira, Francisco W.C. ; Araujo, Francisco D.V. ; Menezes, Alan S. ; Paraguassu, W. ; Souza Filho, Antonio G. ; Viana, Bartolomeu C. ; Alencar, Rafael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-5dd56343c1a0d3d126bcb9027046fca281637f9aedf5a36dbc5fe7d40a3fdc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anharmonicity</topic><topic>Bulk modulus</topic><topic>Compressibility</topic><topic>Debye temperature</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Gallium</topic><topic>gallium selenide telluride</topic><topic>Gallium selenides</topic><topic>Gruneisen parameter</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Pressure</topic><topic>Pressure dependence</topic><topic>Process parameters</topic><topic>Raman spectroscopy</topic><topic>Red shift</topic><topic>Selenide</topic><topic>Tellurides</topic><topic>temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Victor V.</creatorcontrib><creatorcontrib>Leite, Fábio F.</creatorcontrib><creatorcontrib>Silva, Francisco W.N.</creatorcontrib><creatorcontrib>Oliveira, Francisco W.C.</creatorcontrib><creatorcontrib>Araujo, Francisco D.V.</creatorcontrib><creatorcontrib>Menezes, Alan S.</creatorcontrib><creatorcontrib>Paraguassu, W.</creatorcontrib><creatorcontrib>Souza Filho, Antonio G.</creatorcontrib><creatorcontrib>Viana, Bartolomeu C.</creatorcontrib><creatorcontrib>Alencar, Rafael S.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Victor V.</au><au>Leite, Fábio F.</au><au>Silva, Francisco W.N.</au><au>Oliveira, Francisco W.C.</au><au>Araujo, Francisco D.V.</au><au>Menezes, Alan S.</au><au>Paraguassu, W.</au><au>Souza Filho, Antonio G.</au><au>Viana, Bartolomeu C.</au><au>Alencar, Rafael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature‐ and pressure‐dependent phonon dynamics properties of gallium selenide telluride</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2022-07</date><risdate>2022</risdate><volume>53</volume><issue>7</issue><spage>1275</spage><epage>1284</epage><pages>1275-1284</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Understanding the thermodynamic properties of materials is a fundamental issue in physics, and its knowledge is crucial for targeting a specific material for possible applications. In this work, we report a temperature‐ and pressure‐dependent Raman study of bulk GaSe0.5Te0.5 alloy, besides their relevant thermodynamic parameters. Our results show a nonlinear redshift for the A1g and E2g vibrational modes as the temperature increases in the temperature range from 10 to 748 K. Such behavior is well described by considering both thermal expansion and phonon–phonon coupling contributions. By combining density functional theory (DFT) calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated for GaSe0.5Te0.5 alloy. Furthermore, the high‐pressure measurements and DFT calculations, performed in the pressure range from 0 to 26.4 GPa, show a quadratic trend for the ωA1g and ωE2g modes as a function of pressure, with the A1g modes being more compressible than E2g one, that is, ∂ωA1g∂P&gt;∂ωE2g∂P. No structural phase transition is observed until the maximum pressure reached in the experiment. This study took a step forward in the understanding of mechanical and thermal properties related to GaSe0.5Te0.5 alloy, whose determined parameters are important for designing new applications. We present a temperature‐ and pressure‐dependent Raman spectroscopy study of bulk GaSe0.5Te0.5 in order to access its thermal and mechanical properties. By combining DFT calculations and Raman spectroscopy experiments, the anharmonic constants relative to the three‐ and four‐phonon decay processes, mode‐Grüneisen parameters, Debye temperature, thermal expansion coefficient, and bulk modulus were estimated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.6364</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3802-1168</orcidid><orcidid>https://orcid.org/0000-0003-4980-4694</orcidid><orcidid>https://orcid.org/0000-0003-3256-8867</orcidid><orcidid>https://orcid.org/0000-0002-3462-4423</orcidid><orcidid>https://orcid.org/0000-0003-2149-6335</orcidid><orcidid>https://orcid.org/0000-0002-9992-7564</orcidid><orcidid>https://orcid.org/0000-0002-8817-0156</orcidid><orcidid>https://orcid.org/0000-0002-5207-4269</orcidid><orcidid>https://orcid.org/0000-0002-3241-3059</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2022-07, Vol.53 (7), p.1275-1284
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_2689688592
source Wiley Online Library Journals Frontfile Complete
subjects Anharmonicity
Bulk modulus
Compressibility
Debye temperature
Density functional theory
DFT
Gallium
gallium selenide telluride
Gallium selenides
Gruneisen parameter
Material properties
Mathematical analysis
Phase transitions
Phonons
Pressure
Pressure dependence
Process parameters
Raman spectroscopy
Red shift
Selenide
Tellurides
temperature
Temperature dependence
Thermal expansion
Thermal properties
Thermodynamic properties
Thermodynamics
Vibration mode
title Temperature‐ and pressure‐dependent phonon dynamics properties of gallium selenide telluride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%E2%80%90%20and%20pressure%E2%80%90dependent%20phonon%20dynamics%20properties%20of%20gallium%20selenide%20telluride&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Oliveira,%20Victor%20V.&rft.date=2022-07&rft.volume=53&rft.issue=7&rft.spage=1275&rft.epage=1284&rft.pages=1275-1284&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.6364&rft_dat=%3Cproquest_cross%3E2689688592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689688592&rft_id=info:pmid/&rfr_iscdi=true