Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage
Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change compos...
Gespeichert in:
Veröffentlicht in: | Process safety and environmental protection 2022-06, Vol.162, p.346-356 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 356 |
---|---|
container_issue | |
container_start_page | 346 |
container_title | Process safety and environmental protection |
container_volume | 162 |
creator | Xiong, Yaxuan Song, Chaoyu Ren, Jing Jin, Yuhe Nie, Binjian Xu, Qian Wu, Yuting Li, Chuan Li, Haimeng Ding, Yulong |
description | Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression & hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3. |
doi_str_mv | 10.1016/j.psep.2022.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689216097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582022003081</els_id><sourcerecordid>2689216097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</originalsourceid><addsrcrecordid>eNp9UE1v1DAQtVCR2Bb-ACdLPSf4I3EciQuqaEFaiQNwtib2JPEqG6e2t-pe-O14tZw5vdHMe_NmHiEfOas54-rTod4SbrVgQtSsqRlr3pAd75qmkm2vb8iO9W1XtVqwd-Q2pQNjjIuO78ifn8vJTVj51foVI2R0FNJMB0ilSjNsWKUMw4J0m0uP2hnWqUA4biH5jImOIdIZ4eVMj5hhoaN_hezDSmF1dDj5xfl1onnGeCxTLC7TmaYcIkz4nrwdYUn44R_ekd-PX389fKv2P56-P3zZV1YKnSuFvZZgGysbrgbeSdQSRy2EUh20w6h7iUo4La3TbTdoUAJU15cnGwdydPKO3F_3bjE8nzBlcwinuBZLI5TuBVes7wpLXFk2hpQijmaL_gjxbDgzl5zNwVxyNpecDWtMybmIPl9FWO5_8RhNsh5Xi85HtNm44P8n_wvXrYic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689216097</pqid></control><display><type>article</type><title>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xiong, Yaxuan ; Song, Chaoyu ; Ren, Jing ; Jin, Yuhe ; Nie, Binjian ; Xu, Qian ; Wu, Yuting ; Li, Chuan ; Li, Haimeng ; Ding, Yulong</creator><creatorcontrib>Xiong, Yaxuan ; Song, Chaoyu ; Ren, Jing ; Jin, Yuhe ; Nie, Binjian ; Xu, Qian ; Wu, Yuting ; Li, Chuan ; Li, Haimeng ; Ding, Yulong</creatorcontrib><description>Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression & hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2022.04.004</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Ashes ; Chemical compatibility ; Cold pressing ; Composite materials ; Compression ; Compressive strength ; Energy storage ; Heavy metals ; Incineration ; Mass ratios ; Mechanical properties ; Metals ; Municipal waste recycling ; Municipal wastes ; Phase change materials ; Skeleton materials ; Sludge ; Thermal energy ; Thermal energy storage ; Thermal stability</subject><ispartof>Process safety and environmental protection, 2022-06, Vol.162, p.346-356</ispartof><rights>2022 The Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</citedby><cites>FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.psep.2022.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xiong, Yaxuan</creatorcontrib><creatorcontrib>Song, Chaoyu</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Jin, Yuhe</creatorcontrib><creatorcontrib>Nie, Binjian</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Wu, Yuting</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Haimeng</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><title>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</title><title>Process safety and environmental protection</title><description>Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression & hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3.</description><subject>Ashes</subject><subject>Chemical compatibility</subject><subject>Cold pressing</subject><subject>Composite materials</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Energy storage</subject><subject>Heavy metals</subject><subject>Incineration</subject><subject>Mass ratios</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Municipal waste recycling</subject><subject>Municipal wastes</subject><subject>Phase change materials</subject><subject>Skeleton materials</subject><subject>Sludge</subject><subject>Thermal energy</subject><subject>Thermal energy storage</subject><subject>Thermal stability</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1v1DAQtVCR2Bb-ACdLPSf4I3EciQuqaEFaiQNwtib2JPEqG6e2t-pe-O14tZw5vdHMe_NmHiEfOas54-rTod4SbrVgQtSsqRlr3pAd75qmkm2vb8iO9W1XtVqwd-Q2pQNjjIuO78ifn8vJTVj51foVI2R0FNJMB0ilSjNsWKUMw4J0m0uP2hnWqUA4biH5jImOIdIZ4eVMj5hhoaN_hezDSmF1dDj5xfl1onnGeCxTLC7TmaYcIkz4nrwdYUn44R_ekd-PX389fKv2P56-P3zZV1YKnSuFvZZgGysbrgbeSdQSRy2EUh20w6h7iUo4La3TbTdoUAJU15cnGwdydPKO3F_3bjE8nzBlcwinuBZLI5TuBVes7wpLXFk2hpQijmaL_gjxbDgzl5zNwVxyNpecDWtMybmIPl9FWO5_8RhNsh5Xi85HtNm44P8n_wvXrYic</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Xiong, Yaxuan</creator><creator>Song, Chaoyu</creator><creator>Ren, Jing</creator><creator>Jin, Yuhe</creator><creator>Nie, Binjian</creator><creator>Xu, Qian</creator><creator>Wu, Yuting</creator><creator>Li, Chuan</creator><creator>Li, Haimeng</creator><creator>Ding, Yulong</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202206</creationdate><title>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</title><author>Xiong, Yaxuan ; Song, Chaoyu ; Ren, Jing ; Jin, Yuhe ; Nie, Binjian ; Xu, Qian ; Wu, Yuting ; Li, Chuan ; Li, Haimeng ; Ding, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ashes</topic><topic>Chemical compatibility</topic><topic>Cold pressing</topic><topic>Composite materials</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Energy storage</topic><topic>Heavy metals</topic><topic>Incineration</topic><topic>Mass ratios</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Municipal waste recycling</topic><topic>Municipal wastes</topic><topic>Phase change materials</topic><topic>Skeleton materials</topic><topic>Sludge</topic><topic>Thermal energy</topic><topic>Thermal energy storage</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yaxuan</creatorcontrib><creatorcontrib>Song, Chaoyu</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Jin, Yuhe</creatorcontrib><creatorcontrib>Nie, Binjian</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Wu, Yuting</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Haimeng</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yaxuan</au><au>Song, Chaoyu</au><au>Ren, Jing</au><au>Jin, Yuhe</au><au>Nie, Binjian</au><au>Xu, Qian</au><au>Wu, Yuting</au><au>Li, Chuan</au><au>Li, Haimeng</au><au>Ding, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</atitle><jtitle>Process safety and environmental protection</jtitle><date>2022-06</date><risdate>2022</risdate><volume>162</volume><spage>346</spage><epage>356</epage><pages>346-356</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression & hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.psep.2022.04.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-5820 |
ispartof | Process safety and environmental protection, 2022-06, Vol.162, p.346-356 |
issn | 0957-5820 1744-3598 |
language | eng |
recordid | cdi_proquest_journals_2689216097 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Ashes Chemical compatibility Cold pressing Composite materials Compression Compressive strength Energy storage Heavy metals Incineration Mass ratios Mechanical properties Metals Municipal waste recycling Municipal wastes Phase change materials Skeleton materials Sludge Thermal energy Thermal energy storage Thermal stability |
title | Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sludge-incinerated%20ash%20based%20shape-stable%20phase%20change%20composites%20for%20heavy%20metal%20fixation%20and%20building%20thermal%20energy%20storage&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Xiong,%20Yaxuan&rft.date=2022-06&rft.volume=162&rft.spage=346&rft.epage=356&rft.pages=346-356&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2022.04.004&rft_dat=%3Cproquest_cross%3E2689216097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689216097&rft_id=info:pmid/&rft_els_id=S0957582022003081&rfr_iscdi=true |