Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage

Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change compos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process safety and environmental protection 2022-06, Vol.162, p.346-356
Hauptverfasser: Xiong, Yaxuan, Song, Chaoyu, Ren, Jing, Jin, Yuhe, Nie, Binjian, Xu, Qian, Wu, Yuting, Li, Chuan, Li, Haimeng, Ding, Yulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue
container_start_page 346
container_title Process safety and environmental protection
container_volume 162
creator Xiong, Yaxuan
Song, Chaoyu
Ren, Jing
Jin, Yuhe
Nie, Binjian
Xu, Qian
Wu, Yuting
Li, Chuan
Li, Haimeng
Ding, Yulong
description Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression & hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3.
doi_str_mv 10.1016/j.psep.2022.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689216097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582022003081</els_id><sourcerecordid>2689216097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</originalsourceid><addsrcrecordid>eNp9UE1v1DAQtVCR2Bb-ACdLPSf4I3EciQuqaEFaiQNwtib2JPEqG6e2t-pe-O14tZw5vdHMe_NmHiEfOas54-rTod4SbrVgQtSsqRlr3pAd75qmkm2vb8iO9W1XtVqwd-Q2pQNjjIuO78ifn8vJTVj51foVI2R0FNJMB0ilSjNsWKUMw4J0m0uP2hnWqUA4biH5jImOIdIZ4eVMj5hhoaN_hezDSmF1dDj5xfl1onnGeCxTLC7TmaYcIkz4nrwdYUn44R_ekd-PX389fKv2P56-P3zZV1YKnSuFvZZgGysbrgbeSdQSRy2EUh20w6h7iUo4La3TbTdoUAJU15cnGwdydPKO3F_3bjE8nzBlcwinuBZLI5TuBVes7wpLXFk2hpQijmaL_gjxbDgzl5zNwVxyNpecDWtMybmIPl9FWO5_8RhNsh5Xi85HtNm44P8n_wvXrYic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689216097</pqid></control><display><type>article</type><title>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xiong, Yaxuan ; Song, Chaoyu ; Ren, Jing ; Jin, Yuhe ; Nie, Binjian ; Xu, Qian ; Wu, Yuting ; Li, Chuan ; Li, Haimeng ; Ding, Yulong</creator><creatorcontrib>Xiong, Yaxuan ; Song, Chaoyu ; Ren, Jing ; Jin, Yuhe ; Nie, Binjian ; Xu, Qian ; Wu, Yuting ; Li, Chuan ; Li, Haimeng ; Ding, Yulong</creatorcontrib><description>Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression &amp; hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2022.04.004</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Ashes ; Chemical compatibility ; Cold pressing ; Composite materials ; Compression ; Compressive strength ; Energy storage ; Heavy metals ; Incineration ; Mass ratios ; Mechanical properties ; Metals ; Municipal waste recycling ; Municipal wastes ; Phase change materials ; Skeleton materials ; Sludge ; Thermal energy ; Thermal energy storage ; Thermal stability</subject><ispartof>Process safety and environmental protection, 2022-06, Vol.162, p.346-356</ispartof><rights>2022 The Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</citedby><cites>FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.psep.2022.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xiong, Yaxuan</creatorcontrib><creatorcontrib>Song, Chaoyu</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Jin, Yuhe</creatorcontrib><creatorcontrib>Nie, Binjian</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Wu, Yuting</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Haimeng</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><title>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</title><title>Process safety and environmental protection</title><description>Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression &amp; hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3.</description><subject>Ashes</subject><subject>Chemical compatibility</subject><subject>Cold pressing</subject><subject>Composite materials</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Energy storage</subject><subject>Heavy metals</subject><subject>Incineration</subject><subject>Mass ratios</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Municipal waste recycling</subject><subject>Municipal wastes</subject><subject>Phase change materials</subject><subject>Skeleton materials</subject><subject>Sludge</subject><subject>Thermal energy</subject><subject>Thermal energy storage</subject><subject>Thermal stability</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1v1DAQtVCR2Bb-ACdLPSf4I3EciQuqaEFaiQNwtib2JPEqG6e2t-pe-O14tZw5vdHMe_NmHiEfOas54-rTod4SbrVgQtSsqRlr3pAd75qmkm2vb8iO9W1XtVqwd-Q2pQNjjIuO78ifn8vJTVj51foVI2R0FNJMB0ilSjNsWKUMw4J0m0uP2hnWqUA4biH5jImOIdIZ4eVMj5hhoaN_hezDSmF1dDj5xfl1onnGeCxTLC7TmaYcIkz4nrwdYUn44R_ekd-PX389fKv2P56-P3zZV1YKnSuFvZZgGysbrgbeSdQSRy2EUh20w6h7iUo4La3TbTdoUAJU15cnGwdydPKO3F_3bjE8nzBlcwinuBZLI5TuBVes7wpLXFk2hpQijmaL_gjxbDgzl5zNwVxyNpecDWtMybmIPl9FWO5_8RhNsh5Xi85HtNm44P8n_wvXrYic</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Xiong, Yaxuan</creator><creator>Song, Chaoyu</creator><creator>Ren, Jing</creator><creator>Jin, Yuhe</creator><creator>Nie, Binjian</creator><creator>Xu, Qian</creator><creator>Wu, Yuting</creator><creator>Li, Chuan</creator><creator>Li, Haimeng</creator><creator>Ding, Yulong</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202206</creationdate><title>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</title><author>Xiong, Yaxuan ; Song, Chaoyu ; Ren, Jing ; Jin, Yuhe ; Nie, Binjian ; Xu, Qian ; Wu, Yuting ; Li, Chuan ; Li, Haimeng ; Ding, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-6e983ac4c3416b173e83ef822667a5bf893e62d83cd857b8a62a6790014da3fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ashes</topic><topic>Chemical compatibility</topic><topic>Cold pressing</topic><topic>Composite materials</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Energy storage</topic><topic>Heavy metals</topic><topic>Incineration</topic><topic>Mass ratios</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Municipal waste recycling</topic><topic>Municipal wastes</topic><topic>Phase change materials</topic><topic>Skeleton materials</topic><topic>Sludge</topic><topic>Thermal energy</topic><topic>Thermal energy storage</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Yaxuan</creatorcontrib><creatorcontrib>Song, Chaoyu</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Jin, Yuhe</creatorcontrib><creatorcontrib>Nie, Binjian</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Wu, Yuting</creatorcontrib><creatorcontrib>Li, Chuan</creatorcontrib><creatorcontrib>Li, Haimeng</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Yaxuan</au><au>Song, Chaoyu</au><au>Ren, Jing</au><au>Jin, Yuhe</au><au>Nie, Binjian</au><au>Xu, Qian</au><au>Wu, Yuting</au><au>Li, Chuan</au><au>Li, Haimeng</au><au>Ding, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage</atitle><jtitle>Process safety and environmental protection</jtitle><date>2022-06</date><risdate>2022</risdate><volume>162</volume><spage>346</spage><epage>356</epage><pages>346-356</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>Incineration is a harmless way to treat municipal sludge. However, it is difficult to fix heavy metals in the sludge-incinerated ash (SIA). To fix the heavy metals and recycle the SIA effectively, this work innovatively proposed the SIA as skeleton material, and five shape-stable phase change composites (SSPCCs) with different mass ratios of SIA to NaNO3 (phase change material, PCM) were fabricated via the cold-compression &amp; hot-sintering (CCHS) method. Then, key thermal performance, mechanical strength, and micromorphology were investigated while the chemical compatibility between the SIA components and NaNO3 was analyzed. Results showed that the SSPCCs could fix the heavy metals properly, and the SIA was suitable for skeleton material; The SSPCC with the mass ratio 5:5 of SIA to NaNO3 reached a maximal thermal energy storage (TES) density of 409.25 kJ/kg in the range of 100–400 °C, which had high mechanical strength of 139.65 MPa and good thermal stability; The SIA components demonstrated excellent chemical compatibility with NaNO3.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.psep.2022.04.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-5820
ispartof Process safety and environmental protection, 2022-06, Vol.162, p.346-356
issn 0957-5820
1744-3598
language eng
recordid cdi_proquest_journals_2689216097
source ScienceDirect Journals (5 years ago - present)
subjects Ashes
Chemical compatibility
Cold pressing
Composite materials
Compression
Compressive strength
Energy storage
Heavy metals
Incineration
Mass ratios
Mechanical properties
Metals
Municipal waste recycling
Municipal wastes
Phase change materials
Skeleton materials
Sludge
Thermal energy
Thermal energy storage
Thermal stability
title Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sludge-incinerated%20ash%20based%20shape-stable%20phase%20change%20composites%20for%20heavy%20metal%20fixation%20and%20building%20thermal%20energy%20storage&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Xiong,%20Yaxuan&rft.date=2022-06&rft.volume=162&rft.spage=346&rft.epage=356&rft.pages=346-356&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2022.04.004&rft_dat=%3Cproquest_cross%3E2689216097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689216097&rft_id=info:pmid/&rft_els_id=S0957582022003081&rfr_iscdi=true