Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air
As green energy, Liquid hydrogen promises to be widely used in the future. However, its security issue has become a great concern because liquid hydrogen will quickly form a low-temperature, flammable, and explosive vapor cloud when leaking or spilling occurs. In this work, liquid helium spilling ex...
Gespeichert in:
Veröffentlicht in: | Process safety and environmental protection 2022-06, Vol.162, p.923-931 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 931 |
---|---|
container_issue | |
container_start_page | 923 |
container_title | Process safety and environmental protection |
container_volume | 162 |
creator | Shu, Zhiyong Lei, Gang Liang, Wenqing Dai, Wenxiao Lu, Fuming Zheng, Xiaohong Qian, Hua |
description | As green energy, Liquid hydrogen promises to be widely used in the future. However, its security issue has become a great concern because liquid hydrogen will quickly form a low-temperature, flammable, and explosive vapor cloud when leaking or spilling occurs. In this work, liquid helium spilling experiments were designed and performed to predict the dispersion characteristics of liquid hydrogen in confined space with controlled and comparable boundary conditions. The concentration cloud and the infrared cloud images near the liquid helium pool were obtained at the same time. Results show that the air humidity has an impact on the vapor cloud temperature change, i.e., every 10% increase in air humidity will lead to a 5 ℃-temperature increase. The presence of high air humidity increases the vapor cloud buoyancy and promotes the cloud's dispersion in the vertical direction. The visible range of the helium vapor cloud is much smaller than the measured combustible concentration range with air humidity of 50–70%. The helium vapor concentration range at different vertical heights and horizontal distances also increases with the air humidity. The experimental data fits the cloud concentration decay curve under different ambient humidity satisfying the exponential function. The work is expected to provide a technical basis for safety studies of liquid hydrogen and liquid helium spilling.
[Display omitted] |
doi_str_mv | 10.1016/j.psep.2022.04.066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689211950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582022003822</els_id><sourcerecordid>2689211950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-38150ec11c6ac84cc088ad7026598526d5c95fbe703d3848e0b74828d44ef5293</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjB7oSdG13JEu2DN2UkD4g0E27Foo0jhUc25Gctvn7KqTrrgaGc-dxCLljkDNg5cMmHyOOOQfOcxA5lOUZmbFKiKyQtTonM6hllUnF4ZJcxbgBAMYrNiPt4mfE4LfYT6ajvv_COPm1mfzQ06Gh7cGFYY09dT4mLh7btjXB2CmlEmoj_fZTSzu_23tHW-z8fkvj6LsupnF0OySKGh9uyEVjuoi3f_WafD4vPuav2fL95W3-tMxswdWUFYpJQMuYLY1VwlpQyrgKeJn-kLx00tayWWEFhSuUUAirSiiunBDYSF4X1-T-NHcMw26fvtGbYR_6tFLzUtWcsVpCoviJsmGIMWCjxyTBhINmoI9G9UYfjeqjUQ1CJ6Mp9HgKYbr_y2PQ0XrsLTof0E7aDf6_-C_Ls4EJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689211950</pqid></control><display><type>article</type><title>Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shu, Zhiyong ; Lei, Gang ; Liang, Wenqing ; Dai, Wenxiao ; Lu, Fuming ; Zheng, Xiaohong ; Qian, Hua</creator><creatorcontrib>Shu, Zhiyong ; Lei, Gang ; Liang, Wenqing ; Dai, Wenxiao ; Lu, Fuming ; Zheng, Xiaohong ; Qian, Hua</creatorcontrib><description>As green energy, Liquid hydrogen promises to be widely used in the future. However, its security issue has become a great concern because liquid hydrogen will quickly form a low-temperature, flammable, and explosive vapor cloud when leaking or spilling occurs. In this work, liquid helium spilling experiments were designed and performed to predict the dispersion characteristics of liquid hydrogen in confined space with controlled and comparable boundary conditions. The concentration cloud and the infrared cloud images near the liquid helium pool were obtained at the same time. Results show that the air humidity has an impact on the vapor cloud temperature change, i.e., every 10% increase in air humidity will lead to a 5 ℃-temperature increase. The presence of high air humidity increases the vapor cloud buoyancy and promotes the cloud's dispersion in the vertical direction. The visible range of the helium vapor cloud is much smaller than the measured combustible concentration range with air humidity of 50–70%. The helium vapor concentration range at different vertical heights and horizontal distances also increases with the air humidity. The experimental data fits the cloud concentration decay curve under different ambient humidity satisfying the exponential function. The work is expected to provide a technical basis for safety studies of liquid hydrogen and liquid helium spilling.
[Display omitted]</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2022.04.066</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Air humidity ; Air temperature ; Boundary conditions ; Clean energy ; Confined spaces ; Dispersion ; Dispersion characteristics ; Experiment ; Exponential functions ; Flammability ; Helium ; Humidity ; Hydrogen ; Hydrogen-based energy ; Infrared imagery ; Liquid helium ; Liquid hydrogen ; Low temperature ; Renewable energy ; Safety scope ; Security ; Spilling ; Vapor clouds ; Vapors</subject><ispartof>Process safety and environmental protection, 2022-06, Vol.162, p.923-931</ispartof><rights>2022 The Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-38150ec11c6ac84cc088ad7026598526d5c95fbe703d3848e0b74828d44ef5293</citedby><cites>FETCH-LOGICAL-c328t-38150ec11c6ac84cc088ad7026598526d5c95fbe703d3848e0b74828d44ef5293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.psep.2022.04.066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Shu, Zhiyong</creatorcontrib><creatorcontrib>Lei, Gang</creatorcontrib><creatorcontrib>Liang, Wenqing</creatorcontrib><creatorcontrib>Dai, Wenxiao</creatorcontrib><creatorcontrib>Lu, Fuming</creatorcontrib><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Qian, Hua</creatorcontrib><title>Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air</title><title>Process safety and environmental protection</title><description>As green energy, Liquid hydrogen promises to be widely used in the future. However, its security issue has become a great concern because liquid hydrogen will quickly form a low-temperature, flammable, and explosive vapor cloud when leaking or spilling occurs. In this work, liquid helium spilling experiments were designed and performed to predict the dispersion characteristics of liquid hydrogen in confined space with controlled and comparable boundary conditions. The concentration cloud and the infrared cloud images near the liquid helium pool were obtained at the same time. Results show that the air humidity has an impact on the vapor cloud temperature change, i.e., every 10% increase in air humidity will lead to a 5 ℃-temperature increase. The presence of high air humidity increases the vapor cloud buoyancy and promotes the cloud's dispersion in the vertical direction. The visible range of the helium vapor cloud is much smaller than the measured combustible concentration range with air humidity of 50–70%. The helium vapor concentration range at different vertical heights and horizontal distances also increases with the air humidity. The experimental data fits the cloud concentration decay curve under different ambient humidity satisfying the exponential function. The work is expected to provide a technical basis for safety studies of liquid hydrogen and liquid helium spilling.
[Display omitted]</description><subject>Air humidity</subject><subject>Air temperature</subject><subject>Boundary conditions</subject><subject>Clean energy</subject><subject>Confined spaces</subject><subject>Dispersion</subject><subject>Dispersion characteristics</subject><subject>Experiment</subject><subject>Exponential functions</subject><subject>Flammability</subject><subject>Helium</subject><subject>Humidity</subject><subject>Hydrogen</subject><subject>Hydrogen-based energy</subject><subject>Infrared imagery</subject><subject>Liquid helium</subject><subject>Liquid hydrogen</subject><subject>Low temperature</subject><subject>Renewable energy</subject><subject>Safety scope</subject><subject>Security</subject><subject>Spilling</subject><subject>Vapor clouds</subject><subject>Vapors</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoenjB7oSdG13JEu2DN2UkD4g0E27Foo0jhUc25Gctvn7KqTrrgaGc-dxCLljkDNg5cMmHyOOOQfOcxA5lOUZmbFKiKyQtTonM6hllUnF4ZJcxbgBAMYrNiPt4mfE4LfYT6ajvv_COPm1mfzQ06Gh7cGFYY09dT4mLh7btjXB2CmlEmoj_fZTSzu_23tHW-z8fkvj6LsupnF0OySKGh9uyEVjuoi3f_WafD4vPuav2fL95W3-tMxswdWUFYpJQMuYLY1VwlpQyrgKeJn-kLx00tayWWEFhSuUUAirSiiunBDYSF4X1-T-NHcMw26fvtGbYR_6tFLzUtWcsVpCoviJsmGIMWCjxyTBhINmoI9G9UYfjeqjUQ1CJ6Mp9HgKYbr_y2PQ0XrsLTof0E7aDf6_-C_Ls4EJ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Shu, Zhiyong</creator><creator>Lei, Gang</creator><creator>Liang, Wenqing</creator><creator>Dai, Wenxiao</creator><creator>Lu, Fuming</creator><creator>Zheng, Xiaohong</creator><creator>Qian, Hua</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202206</creationdate><title>Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air</title><author>Shu, Zhiyong ; Lei, Gang ; Liang, Wenqing ; Dai, Wenxiao ; Lu, Fuming ; Zheng, Xiaohong ; Qian, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-38150ec11c6ac84cc088ad7026598526d5c95fbe703d3848e0b74828d44ef5293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air humidity</topic><topic>Air temperature</topic><topic>Boundary conditions</topic><topic>Clean energy</topic><topic>Confined spaces</topic><topic>Dispersion</topic><topic>Dispersion characteristics</topic><topic>Experiment</topic><topic>Exponential functions</topic><topic>Flammability</topic><topic>Helium</topic><topic>Humidity</topic><topic>Hydrogen</topic><topic>Hydrogen-based energy</topic><topic>Infrared imagery</topic><topic>Liquid helium</topic><topic>Liquid hydrogen</topic><topic>Low temperature</topic><topic>Renewable energy</topic><topic>Safety scope</topic><topic>Security</topic><topic>Spilling</topic><topic>Vapor clouds</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Zhiyong</creatorcontrib><creatorcontrib>Lei, Gang</creatorcontrib><creatorcontrib>Liang, Wenqing</creatorcontrib><creatorcontrib>Dai, Wenxiao</creatorcontrib><creatorcontrib>Lu, Fuming</creatorcontrib><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Qian, Hua</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Zhiyong</au><au>Lei, Gang</au><au>Liang, Wenqing</au><au>Dai, Wenxiao</au><au>Lu, Fuming</au><au>Zheng, Xiaohong</au><au>Qian, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air</atitle><jtitle>Process safety and environmental protection</jtitle><date>2022-06</date><risdate>2022</risdate><volume>162</volume><spage>923</spage><epage>931</epage><pages>923-931</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>As green energy, Liquid hydrogen promises to be widely used in the future. However, its security issue has become a great concern because liquid hydrogen will quickly form a low-temperature, flammable, and explosive vapor cloud when leaking or spilling occurs. In this work, liquid helium spilling experiments were designed and performed to predict the dispersion characteristics of liquid hydrogen in confined space with controlled and comparable boundary conditions. The concentration cloud and the infrared cloud images near the liquid helium pool were obtained at the same time. Results show that the air humidity has an impact on the vapor cloud temperature change, i.e., every 10% increase in air humidity will lead to a 5 ℃-temperature increase. The presence of high air humidity increases the vapor cloud buoyancy and promotes the cloud's dispersion in the vertical direction. The visible range of the helium vapor cloud is much smaller than the measured combustible concentration range with air humidity of 50–70%. The helium vapor concentration range at different vertical heights and horizontal distances also increases with the air humidity. The experimental data fits the cloud concentration decay curve under different ambient humidity satisfying the exponential function. The work is expected to provide a technical basis for safety studies of liquid hydrogen and liquid helium spilling.
[Display omitted]</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.psep.2022.04.066</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-5820 |
ispartof | Process safety and environmental protection, 2022-06, Vol.162, p.923-931 |
issn | 0957-5820 1744-3598 |
language | eng |
recordid | cdi_proquest_journals_2689211950 |
source | Access via ScienceDirect (Elsevier) |
subjects | Air humidity Air temperature Boundary conditions Clean energy Confined spaces Dispersion Dispersion characteristics Experiment Exponential functions Flammability Helium Humidity Hydrogen Hydrogen-based energy Infrared imagery Liquid helium Liquid hydrogen Low temperature Renewable energy Safety scope Security Spilling Vapor clouds Vapors |
title | Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20hydrogen%20dispersion%20characteristics%20with%20liquid%20helium%20spills%20in%20moist%20air&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Shu,%20Zhiyong&rft.date=2022-06&rft.volume=162&rft.spage=923&rft.epage=931&rft.pages=923-931&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2022.04.066&rft_dat=%3Cproquest_cross%3E2689211950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689211950&rft_id=info:pmid/&rft_els_id=S0957582022003822&rfr_iscdi=true |