OpenFiberSeg: Open-source segmentation of individual fibers and porosity in tomographic scans of additively manufactured short fiber reinforced composites
From a modelling standpoint, the morphology of additively manufactured (AM) high-performance short fiber reinforced polymer (SFRP) is essential to characterize, yet this task poses great challenges. The method presented extracts individual fibers from tomographic scans and produces a segmentation th...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2022-07, Vol.226, p.109497, Article 109497 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109497 |
container_title | Composites science and technology |
container_volume | 226 |
creator | Sosa-Rey, Facundo Abderrafai, Yahya Diouf Lewis, Audrey Therriault, Daniel Piccirelli, Nicola Lévesque, Martin |
description | From a modelling standpoint, the morphology of additively manufactured (AM) high-performance short fiber reinforced polymer (SFRP) is essential to characterize, yet this task poses great challenges. The method presented extracts individual fibers from tomographic scans and produces a segmentation that is 93.1% precise on average on a per-fiber basis across a large range of fiber filling ratios (5–40 wt.%), needs minimal human input and is scalable to full-sized datasets containing ∼105 individual fibers. In addition, this tool allows the analysis of the correlated length and orientation distribution of fibers, and the quantification of shear-induced alignment and fiber breakage. The method is validated by successfully reproducing the segmentation of (continuous) fiber reinforced composites published in 2 separate studies and by predicting the fiber volume fraction and material density directly from the tomographic data of SFRPs. The output can serve as a basis for constituent-level mechanical modelling, and to gain insight into the relationship between processing parameters, morphology and mechanical behavior of SFRP. The full source code and imaging data are attached to this publication.
[Display omitted] |
doi_str_mv | 10.1016/j.compscitech.2022.109497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689211786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353822002391</els_id><sourcerecordid>2689211786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fcb2536f566a020a0b05825d384859c2ebea321fdea909bbadfe30c3e40dc0ae3</originalsourceid><addsrcrecordid>eNqNUcGO0zAQtRBIlIV_MOKcMrabNOaGKnZBWmkPC2fLscetq8YOtlOpv8LX4igcOO5pNDPvvdGbR8hHBlsGrPt83po4Ttn4gua05cB5ncud3L8iG9bvZcOghddkA7zrGtGK_i15l_MZAPat5Bvy52nCcO8HTM94_EKXrslxTgZpxuOIoejiY6DRUR-sv3o76wt1CyFTHSydYorZl1td0xLHeEx6OnlDs9EhLzRtrS_-ipcbHXWYnTZlTmhpPsVUViWa0AcX61FLFzuLIOb35I3Tl4wf_tU78uv-28_D9-bx6eHH4etjY8ROlsaZgbeic23XaeCgYYC2560V_a5vpeE4oBacOYtaghwGbR0KMAJ3YA1oFHfk06o7pfh7xlzUuT4g1JOKd73kjO37rqLkijLVb07o1JT8qNNNMVBLFOqs_otCLVGoNYrKPaxcrDauHpOqKAzVrk9oirLRv0DlL7c6naI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689211786</pqid></control><display><type>article</type><title>OpenFiberSeg: Open-source segmentation of individual fibers and porosity in tomographic scans of additively manufactured short fiber reinforced composites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sosa-Rey, Facundo ; Abderrafai, Yahya ; Diouf Lewis, Audrey ; Therriault, Daniel ; Piccirelli, Nicola ; Lévesque, Martin</creator><creatorcontrib>Sosa-Rey, Facundo ; Abderrafai, Yahya ; Diouf Lewis, Audrey ; Therriault, Daniel ; Piccirelli, Nicola ; Lévesque, Martin</creatorcontrib><description>From a modelling standpoint, the morphology of additively manufactured (AM) high-performance short fiber reinforced polymer (SFRP) is essential to characterize, yet this task poses great challenges. The method presented extracts individual fibers from tomographic scans and produces a segmentation that is 93.1% precise on average on a per-fiber basis across a large range of fiber filling ratios (5–40 wt.%), needs minimal human input and is scalable to full-sized datasets containing ∼105 individual fibers. In addition, this tool allows the analysis of the correlated length and orientation distribution of fibers, and the quantification of shear-induced alignment and fiber breakage. The method is validated by successfully reproducing the segmentation of (continuous) fiber reinforced composites published in 2 separate studies and by predicting the fiber volume fraction and material density directly from the tomographic data of SFRPs. The output can serve as a basis for constituent-level mechanical modelling, and to gain insight into the relationship between processing parameters, morphology and mechanical behavior of SFRP. The full source code and imaging data are attached to this publication.
[Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2022.109497</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>3-D printing ; Additive manufacturing ; Continuous fiber composites ; Fiber reinforced composites ; Fiber reinforced polymers ; Fiber volume fraction ; Fibers ; Image segmentation ; Mechanical properties ; Modelling ; Morphology ; Polymer-matrix composites (PMCs) ; Polymers ; Porosity ; Porosity/voids ; Process parameters ; Short fibers ; Short-fibre composites ; Source code ; Tomography ; X-ray computed tomography</subject><ispartof>Composites science and technology, 2022-07, Vol.226, p.109497, Article 109497</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 28, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fcb2536f566a020a0b05825d384859c2ebea321fdea909bbadfe30c3e40dc0ae3</citedby><cites>FETCH-LOGICAL-c349t-fcb2536f566a020a0b05825d384859c2ebea321fdea909bbadfe30c3e40dc0ae3</cites><orcidid>0000-0003-1140-0635 ; 0000-0003-2886-4567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2022.109497$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sosa-Rey, Facundo</creatorcontrib><creatorcontrib>Abderrafai, Yahya</creatorcontrib><creatorcontrib>Diouf Lewis, Audrey</creatorcontrib><creatorcontrib>Therriault, Daniel</creatorcontrib><creatorcontrib>Piccirelli, Nicola</creatorcontrib><creatorcontrib>Lévesque, Martin</creatorcontrib><title>OpenFiberSeg: Open-source segmentation of individual fibers and porosity in tomographic scans of additively manufactured short fiber reinforced composites</title><title>Composites science and technology</title><description>From a modelling standpoint, the morphology of additively manufactured (AM) high-performance short fiber reinforced polymer (SFRP) is essential to characterize, yet this task poses great challenges. The method presented extracts individual fibers from tomographic scans and produces a segmentation that is 93.1% precise on average on a per-fiber basis across a large range of fiber filling ratios (5–40 wt.%), needs minimal human input and is scalable to full-sized datasets containing ∼105 individual fibers. In addition, this tool allows the analysis of the correlated length and orientation distribution of fibers, and the quantification of shear-induced alignment and fiber breakage. The method is validated by successfully reproducing the segmentation of (continuous) fiber reinforced composites published in 2 separate studies and by predicting the fiber volume fraction and material density directly from the tomographic data of SFRPs. The output can serve as a basis for constituent-level mechanical modelling, and to gain insight into the relationship between processing parameters, morphology and mechanical behavior of SFRP. The full source code and imaging data are attached to this publication.
[Display omitted]</description><subject>3-D printing</subject><subject>Additive manufacturing</subject><subject>Continuous fiber composites</subject><subject>Fiber reinforced composites</subject><subject>Fiber reinforced polymers</subject><subject>Fiber volume fraction</subject><subject>Fibers</subject><subject>Image segmentation</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Polymer-matrix composites (PMCs)</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Porosity/voids</subject><subject>Process parameters</subject><subject>Short fibers</subject><subject>Short-fibre composites</subject><subject>Source code</subject><subject>Tomography</subject><subject>X-ray computed tomography</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUcGO0zAQtRBIlIV_MOKcMrabNOaGKnZBWmkPC2fLscetq8YOtlOpv8LX4igcOO5pNDPvvdGbR8hHBlsGrPt83po4Ttn4gua05cB5ncud3L8iG9bvZcOghddkA7zrGtGK_i15l_MZAPat5Bvy52nCcO8HTM94_EKXrslxTgZpxuOIoejiY6DRUR-sv3o76wt1CyFTHSydYorZl1td0xLHeEx6OnlDs9EhLzRtrS_-ipcbHXWYnTZlTmhpPsVUViWa0AcX61FLFzuLIOb35I3Tl4wf_tU78uv-28_D9-bx6eHH4etjY8ROlsaZgbeic23XaeCgYYC2560V_a5vpeE4oBacOYtaghwGbR0KMAJ3YA1oFHfk06o7pfh7xlzUuT4g1JOKd73kjO37rqLkijLVb07o1JT8qNNNMVBLFOqs_otCLVGoNYrKPaxcrDauHpOqKAzVrk9oirLRv0DlL7c6naI</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Sosa-Rey, Facundo</creator><creator>Abderrafai, Yahya</creator><creator>Diouf Lewis, Audrey</creator><creator>Therriault, Daniel</creator><creator>Piccirelli, Nicola</creator><creator>Lévesque, Martin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1140-0635</orcidid><orcidid>https://orcid.org/0000-0003-2886-4567</orcidid></search><sort><creationdate>20220728</creationdate><title>OpenFiberSeg: Open-source segmentation of individual fibers and porosity in tomographic scans of additively manufactured short fiber reinforced composites</title><author>Sosa-Rey, Facundo ; Abderrafai, Yahya ; Diouf Lewis, Audrey ; Therriault, Daniel ; Piccirelli, Nicola ; Lévesque, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fcb2536f566a020a0b05825d384859c2ebea321fdea909bbadfe30c3e40dc0ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printing</topic><topic>Additive manufacturing</topic><topic>Continuous fiber composites</topic><topic>Fiber reinforced composites</topic><topic>Fiber reinforced polymers</topic><topic>Fiber volume fraction</topic><topic>Fibers</topic><topic>Image segmentation</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Polymer-matrix composites (PMCs)</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Porosity/voids</topic><topic>Process parameters</topic><topic>Short fibers</topic><topic>Short-fibre composites</topic><topic>Source code</topic><topic>Tomography</topic><topic>X-ray computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sosa-Rey, Facundo</creatorcontrib><creatorcontrib>Abderrafai, Yahya</creatorcontrib><creatorcontrib>Diouf Lewis, Audrey</creatorcontrib><creatorcontrib>Therriault, Daniel</creatorcontrib><creatorcontrib>Piccirelli, Nicola</creatorcontrib><creatorcontrib>Lévesque, Martin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sosa-Rey, Facundo</au><au>Abderrafai, Yahya</au><au>Diouf Lewis, Audrey</au><au>Therriault, Daniel</au><au>Piccirelli, Nicola</au><au>Lévesque, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OpenFiberSeg: Open-source segmentation of individual fibers and porosity in tomographic scans of additively manufactured short fiber reinforced composites</atitle><jtitle>Composites science and technology</jtitle><date>2022-07-28</date><risdate>2022</risdate><volume>226</volume><spage>109497</spage><pages>109497-</pages><artnum>109497</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>From a modelling standpoint, the morphology of additively manufactured (AM) high-performance short fiber reinforced polymer (SFRP) is essential to characterize, yet this task poses great challenges. The method presented extracts individual fibers from tomographic scans and produces a segmentation that is 93.1% precise on average on a per-fiber basis across a large range of fiber filling ratios (5–40 wt.%), needs minimal human input and is scalable to full-sized datasets containing ∼105 individual fibers. In addition, this tool allows the analysis of the correlated length and orientation distribution of fibers, and the quantification of shear-induced alignment and fiber breakage. The method is validated by successfully reproducing the segmentation of (continuous) fiber reinforced composites published in 2 separate studies and by predicting the fiber volume fraction and material density directly from the tomographic data of SFRPs. The output can serve as a basis for constituent-level mechanical modelling, and to gain insight into the relationship between processing parameters, morphology and mechanical behavior of SFRP. The full source code and imaging data are attached to this publication.
[Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2022.109497</doi><orcidid>https://orcid.org/0000-0003-1140-0635</orcidid><orcidid>https://orcid.org/0000-0003-2886-4567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2022-07, Vol.226, p.109497, Article 109497 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2689211786 |
source | Access via ScienceDirect (Elsevier) |
subjects | 3-D printing Additive manufacturing Continuous fiber composites Fiber reinforced composites Fiber reinforced polymers Fiber volume fraction Fibers Image segmentation Mechanical properties Modelling Morphology Polymer-matrix composites (PMCs) Polymers Porosity Porosity/voids Process parameters Short fibers Short-fibre composites Source code Tomography X-ray computed tomography |
title | OpenFiberSeg: Open-source segmentation of individual fibers and porosity in tomographic scans of additively manufactured short fiber reinforced composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OpenFiberSeg:%20Open-source%20segmentation%20of%20individual%20fibers%20and%20porosity%20in%20tomographic%20scans%20of%20additively%20manufactured%20short%20fiber%20reinforced%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Sosa-Rey,%20Facundo&rft.date=2022-07-28&rft.volume=226&rft.spage=109497&rft.pages=109497-&rft.artnum=109497&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2022.109497&rft_dat=%3Cproquest_cross%3E2689211786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689211786&rft_id=info:pmid/&rft_els_id=S0266353822002391&rfr_iscdi=true |