Waste-to-BioEnergy pathway for waste activated sludge from food processing industries: An experiment on the valorization potential under CO2 and N2 atmospheres through microwave-induced pyrolysis
[Display omitted] •Microwave pyrolysis successfully reduce the mass of waste activated sludge by 80 wt%.•CO2 pyrolysis improves CO generation in the gaseous product (up to ∼ 50 vol%).•CO2 pyrolysis produce biochar with higher energy density profit (11–14%).•N2 pyrolysis improves H2 generation in the...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2022-09, Vol.323, p.124380, Article 124380 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 124380 |
container_title | Fuel (Guildford) |
container_volume | 323 |
creator | Mong, Guo Ren Chong, William Woei Fong Nor, Siti Aminah Mohd Ng, Jo-Han Chong, Cheng Tung Idris, Rubia Chiong, Meng Choung Wong, Syieluing Nyakuma, Bemgba Bevan |
description | [Display omitted]
•Microwave pyrolysis successfully reduce the mass of waste activated sludge by 80 wt%.•CO2 pyrolysis improves CO generation in the gaseous product (up to ∼ 50 vol%).•CO2 pyrolysis produce biochar with higher energy density profit (11–14%).•N2 pyrolysis improves H2 generation in the gaseous product (up to ∼ 29 vol%).•Up to 83.2% of the energy stored within the waste can be retrieved in bioenergy form.
Pyrolysis is a green and effective method for converting various waste streams into products with bio-energy potential. Waste activated sludge (WAS) from industries requires post-treatment before disposal and will cause serious pollution if not managed properly. Pyrolysis is a viable method for converting WAS into higher-value bio-products. This is the first study to use a lab-scaled microwave reactor to analyse WAS from a food processing and manufacturing company's wastewater treatment plant. The goal is to compare bioproduct formation under various N2 and CO2 atmospheres in order to analyse the WAS waste-to-bioproduct transformation pathway. Result revealed that CO2 pyrolysis on WAS tends to: 1) increase water formation (∼19 wt%), 2) produce biochar with higher energy density profit (∼14%) and 3) generate gaseous products with a higher CO proportion (∼50 vol%). WAS pyrolysis under N2 atmosphere showed 1) an overall better energy profit ( |
doi_str_mv | 10.1016/j.fuel.2022.124380 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689211669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236122012327</els_id><sourcerecordid>2689211669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-fe88d4381d525e90169720ec747febaa7de8a76a0ba94ee8c244b25916eec5d63</originalsourceid><addsrcrecordid>eNp9UU1vEzEUtBCVCC1_gNOTOG-wvd-IS4kKrVTRCxVHy1m_TRxt7MX2Jix_r3-MtwpnTk_yzPjNm2HsveBrwUX18bDuJxzWkku5FrLIG_6KrURT51ktyvw1W3FiZTKvxBv2NsYD57xuymLFXn7qmDBLPvti_Z3DsJth1Gl_1jP0PsB5gUF3yZ50QgNxmMwOoQ_-SLg3MAbfYYzW7cA6M8UULMZPcOsAf48Y7BFdAu8g7RFOevDB_tHJ0sPoE0FWDzA5gwE2TxK0M_CdRjr6OO4xYCRd8NNuD0fbBX_WJ8yWNR1ZGefghznaeMOuej1EfPdvXrPnr3c_NvfZ49O3h83tY9ZRIinrsWkMRSNMKUtsKZC2lhy7uqh73GpdG2x0XWm-1W2B2JCq2MqyFRViV5oqv2YfLv_Szb8mjEkd_BQcrVSyalopRFW1xJIXFvmNMWCvRkpBh1kJrpay1EEtZamlLHUpi0SfLyIk_yeLQcXOoqMzbcAuKePt_-R_Ac-Yoz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689211669</pqid></control><display><type>article</type><title>Waste-to-BioEnergy pathway for waste activated sludge from food processing industries: An experiment on the valorization potential under CO2 and N2 atmospheres through microwave-induced pyrolysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mong, Guo Ren ; Chong, William Woei Fong ; Nor, Siti Aminah Mohd ; Ng, Jo-Han ; Chong, Cheng Tung ; Idris, Rubia ; Chiong, Meng Choung ; Wong, Syieluing ; Nyakuma, Bemgba Bevan</creator><creatorcontrib>Mong, Guo Ren ; Chong, William Woei Fong ; Nor, Siti Aminah Mohd ; Ng, Jo-Han ; Chong, Cheng Tung ; Idris, Rubia ; Chiong, Meng Choung ; Wong, Syieluing ; Nyakuma, Bemgba Bevan</creatorcontrib><description>[Display omitted]
•Microwave pyrolysis successfully reduce the mass of waste activated sludge by 80 wt%.•CO2 pyrolysis improves CO generation in the gaseous product (up to ∼ 50 vol%).•CO2 pyrolysis produce biochar with higher energy density profit (11–14%).•N2 pyrolysis improves H2 generation in the gaseous product (up to ∼ 29 vol%).•Up to 83.2% of the energy stored within the waste can be retrieved in bioenergy form.
Pyrolysis is a green and effective method for converting various waste streams into products with bio-energy potential. Waste activated sludge (WAS) from industries requires post-treatment before disposal and will cause serious pollution if not managed properly. Pyrolysis is a viable method for converting WAS into higher-value bio-products. This is the first study to use a lab-scaled microwave reactor to analyse WAS from a food processing and manufacturing company's wastewater treatment plant. The goal is to compare bioproduct formation under various N2 and CO2 atmospheres in order to analyse the WAS waste-to-bioproduct transformation pathway. Result revealed that CO2 pyrolysis on WAS tends to: 1) increase water formation (∼19 wt%), 2) produce biochar with higher energy density profit (∼14%) and 3) generate gaseous products with a higher CO proportion (∼50 vol%). WAS pyrolysis under N2 atmosphere showed 1) an overall better energy profit (<83.2 %), while producing 2) a higher gaseous yield (∼32 wt%) with 3) higher H2 proportion (∼29 vol%) and 4) biochar of larger surface area (22 m2/g). Integrating CO2 as the pyrolysis medium utilises the excess CO2, potentially relieving the carbon burden on the environment.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2022.124380</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activated sludge ; Atmosphere ; Atmospheres ; Carbon dioxide ; Charcoal ; CO2 utilisation ; Conversion ; Energy ; Food industry ; Food processing ; Food processing industry ; Microwave pyrolysis ; Pyrolysis ; Renewable energy ; Waste activated sludge ; Waste management ; Waste streams ; Waste-to-BioEnergy ; Wastewater treatment ; Wastewater treatment plants</subject><ispartof>Fuel (Guildford), 2022-09, Vol.323, p.124380, Article 124380</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-fe88d4381d525e90169720ec747febaa7de8a76a0ba94ee8c244b25916eec5d63</citedby><cites>FETCH-LOGICAL-c243t-fe88d4381d525e90169720ec747febaa7de8a76a0ba94ee8c244b25916eec5d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2022.124380$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mong, Guo Ren</creatorcontrib><creatorcontrib>Chong, William Woei Fong</creatorcontrib><creatorcontrib>Nor, Siti Aminah Mohd</creatorcontrib><creatorcontrib>Ng, Jo-Han</creatorcontrib><creatorcontrib>Chong, Cheng Tung</creatorcontrib><creatorcontrib>Idris, Rubia</creatorcontrib><creatorcontrib>Chiong, Meng Choung</creatorcontrib><creatorcontrib>Wong, Syieluing</creatorcontrib><creatorcontrib>Nyakuma, Bemgba Bevan</creatorcontrib><title>Waste-to-BioEnergy pathway for waste activated sludge from food processing industries: An experiment on the valorization potential under CO2 and N2 atmospheres through microwave-induced pyrolysis</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Microwave pyrolysis successfully reduce the mass of waste activated sludge by 80 wt%.•CO2 pyrolysis improves CO generation in the gaseous product (up to ∼ 50 vol%).•CO2 pyrolysis produce biochar with higher energy density profit (11–14%).•N2 pyrolysis improves H2 generation in the gaseous product (up to ∼ 29 vol%).•Up to 83.2% of the energy stored within the waste can be retrieved in bioenergy form.
Pyrolysis is a green and effective method for converting various waste streams into products with bio-energy potential. Waste activated sludge (WAS) from industries requires post-treatment before disposal and will cause serious pollution if not managed properly. Pyrolysis is a viable method for converting WAS into higher-value bio-products. This is the first study to use a lab-scaled microwave reactor to analyse WAS from a food processing and manufacturing company's wastewater treatment plant. The goal is to compare bioproduct formation under various N2 and CO2 atmospheres in order to analyse the WAS waste-to-bioproduct transformation pathway. Result revealed that CO2 pyrolysis on WAS tends to: 1) increase water formation (∼19 wt%), 2) produce biochar with higher energy density profit (∼14%) and 3) generate gaseous products with a higher CO proportion (∼50 vol%). WAS pyrolysis under N2 atmosphere showed 1) an overall better energy profit (<83.2 %), while producing 2) a higher gaseous yield (∼32 wt%) with 3) higher H2 proportion (∼29 vol%) and 4) biochar of larger surface area (22 m2/g). Integrating CO2 as the pyrolysis medium utilises the excess CO2, potentially relieving the carbon burden on the environment.</description><subject>Activated sludge</subject><subject>Atmosphere</subject><subject>Atmospheres</subject><subject>Carbon dioxide</subject><subject>Charcoal</subject><subject>CO2 utilisation</subject><subject>Conversion</subject><subject>Energy</subject><subject>Food industry</subject><subject>Food processing</subject><subject>Food processing industry</subject><subject>Microwave pyrolysis</subject><subject>Pyrolysis</subject><subject>Renewable energy</subject><subject>Waste activated sludge</subject><subject>Waste management</subject><subject>Waste streams</subject><subject>Waste-to-BioEnergy</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU1vEzEUtBCVCC1_gNOTOG-wvd-IS4kKrVTRCxVHy1m_TRxt7MX2Jix_r3-MtwpnTk_yzPjNm2HsveBrwUX18bDuJxzWkku5FrLIG_6KrURT51ktyvw1W3FiZTKvxBv2NsYD57xuymLFXn7qmDBLPvti_Z3DsJth1Gl_1jP0PsB5gUF3yZ50QgNxmMwOoQ_-SLg3MAbfYYzW7cA6M8UULMZPcOsAf48Y7BFdAu8g7RFOevDB_tHJ0sPoE0FWDzA5gwE2TxK0M_CdRjr6OO4xYCRd8NNuD0fbBX_WJ8yWNR1ZGefghznaeMOuej1EfPdvXrPnr3c_NvfZ49O3h83tY9ZRIinrsWkMRSNMKUtsKZC2lhy7uqh73GpdG2x0XWm-1W2B2JCq2MqyFRViV5oqv2YfLv_Szb8mjEkd_BQcrVSyalopRFW1xJIXFvmNMWCvRkpBh1kJrpay1EEtZamlLHUpi0SfLyIk_yeLQcXOoqMzbcAuKePt_-R_Ac-Yoz0</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mong, Guo Ren</creator><creator>Chong, William Woei Fong</creator><creator>Nor, Siti Aminah Mohd</creator><creator>Ng, Jo-Han</creator><creator>Chong, Cheng Tung</creator><creator>Idris, Rubia</creator><creator>Chiong, Meng Choung</creator><creator>Wong, Syieluing</creator><creator>Nyakuma, Bemgba Bevan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220901</creationdate><title>Waste-to-BioEnergy pathway for waste activated sludge from food processing industries: An experiment on the valorization potential under CO2 and N2 atmospheres through microwave-induced pyrolysis</title><author>Mong, Guo Ren ; Chong, William Woei Fong ; Nor, Siti Aminah Mohd ; Ng, Jo-Han ; Chong, Cheng Tung ; Idris, Rubia ; Chiong, Meng Choung ; Wong, Syieluing ; Nyakuma, Bemgba Bevan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-fe88d4381d525e90169720ec747febaa7de8a76a0ba94ee8c244b25916eec5d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated sludge</topic><topic>Atmosphere</topic><topic>Atmospheres</topic><topic>Carbon dioxide</topic><topic>Charcoal</topic><topic>CO2 utilisation</topic><topic>Conversion</topic><topic>Energy</topic><topic>Food industry</topic><topic>Food processing</topic><topic>Food processing industry</topic><topic>Microwave pyrolysis</topic><topic>Pyrolysis</topic><topic>Renewable energy</topic><topic>Waste activated sludge</topic><topic>Waste management</topic><topic>Waste streams</topic><topic>Waste-to-BioEnergy</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mong, Guo Ren</creatorcontrib><creatorcontrib>Chong, William Woei Fong</creatorcontrib><creatorcontrib>Nor, Siti Aminah Mohd</creatorcontrib><creatorcontrib>Ng, Jo-Han</creatorcontrib><creatorcontrib>Chong, Cheng Tung</creatorcontrib><creatorcontrib>Idris, Rubia</creatorcontrib><creatorcontrib>Chiong, Meng Choung</creatorcontrib><creatorcontrib>Wong, Syieluing</creatorcontrib><creatorcontrib>Nyakuma, Bemgba Bevan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mong, Guo Ren</au><au>Chong, William Woei Fong</au><au>Nor, Siti Aminah Mohd</au><au>Ng, Jo-Han</au><au>Chong, Cheng Tung</au><au>Idris, Rubia</au><au>Chiong, Meng Choung</au><au>Wong, Syieluing</au><au>Nyakuma, Bemgba Bevan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waste-to-BioEnergy pathway for waste activated sludge from food processing industries: An experiment on the valorization potential under CO2 and N2 atmospheres through microwave-induced pyrolysis</atitle><jtitle>Fuel (Guildford)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>323</volume><spage>124380</spage><pages>124380-</pages><artnum>124380</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Microwave pyrolysis successfully reduce the mass of waste activated sludge by 80 wt%.•CO2 pyrolysis improves CO generation in the gaseous product (up to ∼ 50 vol%).•CO2 pyrolysis produce biochar with higher energy density profit (11–14%).•N2 pyrolysis improves H2 generation in the gaseous product (up to ∼ 29 vol%).•Up to 83.2% of the energy stored within the waste can be retrieved in bioenergy form.
Pyrolysis is a green and effective method for converting various waste streams into products with bio-energy potential. Waste activated sludge (WAS) from industries requires post-treatment before disposal and will cause serious pollution if not managed properly. Pyrolysis is a viable method for converting WAS into higher-value bio-products. This is the first study to use a lab-scaled microwave reactor to analyse WAS from a food processing and manufacturing company's wastewater treatment plant. The goal is to compare bioproduct formation under various N2 and CO2 atmospheres in order to analyse the WAS waste-to-bioproduct transformation pathway. Result revealed that CO2 pyrolysis on WAS tends to: 1) increase water formation (∼19 wt%), 2) produce biochar with higher energy density profit (∼14%) and 3) generate gaseous products with a higher CO proportion (∼50 vol%). WAS pyrolysis under N2 atmosphere showed 1) an overall better energy profit (<83.2 %), while producing 2) a higher gaseous yield (∼32 wt%) with 3) higher H2 proportion (∼29 vol%) and 4) biochar of larger surface area (22 m2/g). Integrating CO2 as the pyrolysis medium utilises the excess CO2, potentially relieving the carbon burden on the environment.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2022.124380</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2022-09, Vol.323, p.124380, Article 124380 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2689211669 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Activated sludge Atmosphere Atmospheres Carbon dioxide Charcoal CO2 utilisation Conversion Energy Food industry Food processing Food processing industry Microwave pyrolysis Pyrolysis Renewable energy Waste activated sludge Waste management Waste streams Waste-to-BioEnergy Wastewater treatment Wastewater treatment plants |
title | Waste-to-BioEnergy pathway for waste activated sludge from food processing industries: An experiment on the valorization potential under CO2 and N2 atmospheres through microwave-induced pyrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waste-to-BioEnergy%20pathway%20for%20waste%20activated%20sludge%20from%20food%20processing%20industries:%20An%20experiment%20on%20the%20valorization%20potential%20under%20CO2%20and%20N2%20atmospheres%20through%20microwave-induced%20pyrolysis&rft.jtitle=Fuel%20(Guildford)&rft.au=Mong,%20Guo%20Ren&rft.date=2022-09-01&rft.volume=323&rft.spage=124380&rft.pages=124380-&rft.artnum=124380&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2022.124380&rft_dat=%3Cproquest_cross%3E2689211669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689211669&rft_id=info:pmid/&rft_els_id=S0016236122012327&rfr_iscdi=true |