The stress function basis of the upper bound theorem of plasticity

The discontinuous slip-line form of upper bound plasticity analysis is considered using an equilibrium of forces approach. It is demonstrated that the underlying basis of the approach can be written in terms of stress functions that provide a continuum stress state interpretation of the upper bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2022-06, Vol.244-245, p.111565, Article 111565
Hauptverfasser: Smith, Colin C., Gilbert, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111565
container_title International journal of solids and structures
container_volume 244-245
creator Smith, Colin C.
Gilbert, Matthew
description The discontinuous slip-line form of upper bound plasticity analysis is considered using an equilibrium of forces approach. It is demonstrated that the underlying basis of the approach can be written in terms of stress functions that provide a continuum stress state interpretation of the upper bound solution. An alternative proof of the upper bound theorem, applicable to both associative and non-associative materials, using stress functions is presented. The broader nature of the equilibrium form and the strict conditions under which it is valid are discussed, including examination of the apparent omission of moment equilibrium and associativity in many equilibrium form solutions. Finally, the relationship of the stress function formulation to the output of the computational limit analysis method discontinuity layout optimisation (DLO) and the potential to use the stress function formulation to derive a form of lower bound solution from an upper bound analysis are demonstrated.
doi_str_mv 10.1016/j.ijsolstr.2022.111565
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689210130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002076832200110X</els_id><sourcerecordid>2689210130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-1798b36adb74daaa900ae9d7475bb8eeebe48cf8c12f7052171b3b8d22d3225b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BSl4bs2jbdKburgqLHhZzyGPKabsNjVJhf32tlTPnobh_xjmh9AtwQXBpL7vCtdFf4gpFBRTWhBCqro6QysieJNTUtbnaIUxxTmvBbtEVzF2GOOSNXiFnvafkE1RiDFrx94k5_tMq-hi5tssTeI4DBAy7cfezrsPcJyl4aBicsal0zW6aNUhws3vXKOP7fN-85rv3l_eNo-73DAiUk54IzSrldW8tEqpBmMFjeUlr7QWAKChFKYVhtCW44oSTjTTwlJqGaWVZmt0t_QOwX-NEJPs_Bj66aSktWjoBIPhyVUvLhN8jAFaOQR3VOEkCZYzL9nJP15y5iUXXlPwYQnC9MO3gyCjcdAbsC6ASdJ691_FD3Yfd6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689210130</pqid></control><display><type>article</type><title>The stress function basis of the upper bound theorem of plasticity</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Smith, Colin C. ; Gilbert, Matthew</creator><creatorcontrib>Smith, Colin C. ; Gilbert, Matthew</creatorcontrib><description>The discontinuous slip-line form of upper bound plasticity analysis is considered using an equilibrium of forces approach. It is demonstrated that the underlying basis of the approach can be written in terms of stress functions that provide a continuum stress state interpretation of the upper bound solution. An alternative proof of the upper bound theorem, applicable to both associative and non-associative materials, using stress functions is presented. The broader nature of the equilibrium form and the strict conditions under which it is valid are discussed, including examination of the apparent omission of moment equilibrium and associativity in many equilibrium form solutions. Finally, the relationship of the stress function formulation to the output of the computational limit analysis method discontinuity layout optimisation (DLO) and the potential to use the stress function formulation to derive a form of lower bound solution from an upper bound analysis are demonstrated.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2022.111565</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Associativity ; Discontinuity ; Limit analysis ; Lower bounds ; Optimization ; Plastic properties ; Plasticity ; Stress function ; Stress functions ; Theorems ; Upper bound ; Upper bounds</subject><ispartof>International journal of solids and structures, 2022-06, Vol.244-245, p.111565, Article 111565</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Jun 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-1798b36adb74daaa900ae9d7475bb8eeebe48cf8c12f7052171b3b8d22d3225b3</citedby><cites>FETCH-LOGICAL-c318t-1798b36adb74daaa900ae9d7475bb8eeebe48cf8c12f7052171b3b8d22d3225b3</cites><orcidid>0000-0003-4633-2839 ; 0000-0002-0611-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002076832200110X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Smith, Colin C.</creatorcontrib><creatorcontrib>Gilbert, Matthew</creatorcontrib><title>The stress function basis of the upper bound theorem of plasticity</title><title>International journal of solids and structures</title><description>The discontinuous slip-line form of upper bound plasticity analysis is considered using an equilibrium of forces approach. It is demonstrated that the underlying basis of the approach can be written in terms of stress functions that provide a continuum stress state interpretation of the upper bound solution. An alternative proof of the upper bound theorem, applicable to both associative and non-associative materials, using stress functions is presented. The broader nature of the equilibrium form and the strict conditions under which it is valid are discussed, including examination of the apparent omission of moment equilibrium and associativity in many equilibrium form solutions. Finally, the relationship of the stress function formulation to the output of the computational limit analysis method discontinuity layout optimisation (DLO) and the potential to use the stress function formulation to derive a form of lower bound solution from an upper bound analysis are demonstrated.</description><subject>Associativity</subject><subject>Discontinuity</subject><subject>Limit analysis</subject><subject>Lower bounds</subject><subject>Optimization</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Stress function</subject><subject>Stress functions</subject><subject>Theorems</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BSl4bs2jbdKburgqLHhZzyGPKabsNjVJhf32tlTPnobh_xjmh9AtwQXBpL7vCtdFf4gpFBRTWhBCqro6QysieJNTUtbnaIUxxTmvBbtEVzF2GOOSNXiFnvafkE1RiDFrx94k5_tMq-hi5tssTeI4DBAy7cfezrsPcJyl4aBicsal0zW6aNUhws3vXKOP7fN-85rv3l_eNo-73DAiUk54IzSrldW8tEqpBmMFjeUlr7QWAKChFKYVhtCW44oSTjTTwlJqGaWVZmt0t_QOwX-NEJPs_Bj66aSktWjoBIPhyVUvLhN8jAFaOQR3VOEkCZYzL9nJP15y5iUXXlPwYQnC9MO3gyCjcdAbsC6ASdJ691_FD3Yfd6Y</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Smith, Colin C.</creator><creator>Gilbert, Matthew</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4633-2839</orcidid><orcidid>https://orcid.org/0000-0002-0611-9227</orcidid></search><sort><creationdate>20220601</creationdate><title>The stress function basis of the upper bound theorem of plasticity</title><author>Smith, Colin C. ; Gilbert, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-1798b36adb74daaa900ae9d7475bb8eeebe48cf8c12f7052171b3b8d22d3225b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Associativity</topic><topic>Discontinuity</topic><topic>Limit analysis</topic><topic>Lower bounds</topic><topic>Optimization</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Stress function</topic><topic>Stress functions</topic><topic>Theorems</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Colin C.</creatorcontrib><creatorcontrib>Gilbert, Matthew</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Colin C.</au><au>Gilbert, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stress function basis of the upper bound theorem of plasticity</atitle><jtitle>International journal of solids and structures</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>244-245</volume><spage>111565</spage><pages>111565-</pages><artnum>111565</artnum><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The discontinuous slip-line form of upper bound plasticity analysis is considered using an equilibrium of forces approach. It is demonstrated that the underlying basis of the approach can be written in terms of stress functions that provide a continuum stress state interpretation of the upper bound solution. An alternative proof of the upper bound theorem, applicable to both associative and non-associative materials, using stress functions is presented. The broader nature of the equilibrium form and the strict conditions under which it is valid are discussed, including examination of the apparent omission of moment equilibrium and associativity in many equilibrium form solutions. Finally, the relationship of the stress function formulation to the output of the computational limit analysis method discontinuity layout optimisation (DLO) and the potential to use the stress function formulation to derive a form of lower bound solution from an upper bound analysis are demonstrated.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2022.111565</doi><orcidid>https://orcid.org/0000-0003-4633-2839</orcidid><orcidid>https://orcid.org/0000-0002-0611-9227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2022-06, Vol.244-245, p.111565, Article 111565
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_2689210130
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Associativity
Discontinuity
Limit analysis
Lower bounds
Optimization
Plastic properties
Plasticity
Stress function
Stress functions
Theorems
Upper bound
Upper bounds
title The stress function basis of the upper bound theorem of plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stress%20function%20basis%20of%20the%20upper%20bound%20theorem%20of%20plasticity&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Smith,%20Colin%20C.&rft.date=2022-06-01&rft.volume=244-245&rft.spage=111565&rft.pages=111565-&rft.artnum=111565&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2022.111565&rft_dat=%3Cproquest_cross%3E2689210130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689210130&rft_id=info:pmid/&rft_els_id=S002076832200110X&rfr_iscdi=true