(\Delta\)-Convergence and Uniform Distribution in Lacunary Sense
In this paper, by considering usual partition of \([0, \infty)\) \(\Delta\)-convergence of non-negative real valued sequences is defined. It is shown that every convergent sequence is \(\Delta\)-convergence but the converse is not true, in general. Besides, some basic properties of \(\Delta\)-conver...
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics and Applications 2017-01, Vol.8 (1), p.69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Communications in Mathematics and Applications |
container_volume | 8 |
creator | Aris, B Küçükaslan, Mehmet |
description | In this paper, by considering usual partition of \([0, \infty)\) \(\Delta\)-convergence of non-negative real valued sequences is defined. It is shown that every convergent sequence is \(\Delta\)-convergence but the converse is not true, in general. Besides, some basic properties of \(\Delta\)-convergence as well as the second part of this paper by using any lacunary sequences as a partition of non-negative real numbers, lacunary uniform distribution is defined and some inclusion result between uniform distribution modulo 1 and lacunary uniform distribution has been given. |
doi_str_mv | 10.26713/cma.v8i1.578 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2689187801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689187801</sourcerecordid><originalsourceid>FETCH-proquest_journals_26891878013</originalsourceid><addsrcrecordid>eNqNir0KwjAYAIMoKOroHnDRoTVpbX42oSoObuomlFhTSalfNGkLvr0iPoDTHdwhNKEkjBin8SK_q7AVhoYJFx00IJIngWCEd7_OgkSSpI_G3peEkEiyJY_lAK1m57WuanWeB6mFVrubhlxjBVd8AlNYd8dr42tnLk1tLGADeK_yBpR74YMGr0eoV6jK6_GPQzTdbo7pLng4-2y0r7PSNg4-KYuYkFRwQWj83_UGxRQ_7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689187801</pqid></control><display><type>article</type><title>(\Delta\)-Convergence and Uniform Distribution in Lacunary Sense</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aris, B ; Küçükaslan, Mehmet</creator><creatorcontrib>Aris, B ; Küçükaslan, Mehmet</creatorcontrib><description>In this paper, by considering usual partition of \([0, \infty)\) \(\Delta\)-convergence of non-negative real valued sequences is defined. It is shown that every convergent sequence is \(\Delta\)-convergence but the converse is not true, in general. Besides, some basic properties of \(\Delta\)-convergence as well as the second part of this paper by using any lacunary sequences as a partition of non-negative real numbers, lacunary uniform distribution is defined and some inclusion result between uniform distribution modulo 1 and lacunary uniform distribution has been given.</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v8i1.578</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Basic converters ; Codes ; Convergence ; Mathematics ; Numbers ; Real numbers</subject><ispartof>Communications in Mathematics and Applications, 2017-01, Vol.8 (1), p.69</ispartof><rights>2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aris, B</creatorcontrib><creatorcontrib>Küçükaslan, Mehmet</creatorcontrib><title>(\Delta\)-Convergence and Uniform Distribution in Lacunary Sense</title><title>Communications in Mathematics and Applications</title><description>In this paper, by considering usual partition of \([0, \infty)\) \(\Delta\)-convergence of non-negative real valued sequences is defined. It is shown that every convergent sequence is \(\Delta\)-convergence but the converse is not true, in general. Besides, some basic properties of \(\Delta\)-convergence as well as the second part of this paper by using any lacunary sequences as a partition of non-negative real numbers, lacunary uniform distribution is defined and some inclusion result between uniform distribution modulo 1 and lacunary uniform distribution has been given.</description><subject>Basic converters</subject><subject>Codes</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Numbers</subject><subject>Real numbers</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNir0KwjAYAIMoKOroHnDRoTVpbX42oSoObuomlFhTSalfNGkLvr0iPoDTHdwhNKEkjBin8SK_q7AVhoYJFx00IJIngWCEd7_OgkSSpI_G3peEkEiyJY_lAK1m57WuanWeB6mFVrubhlxjBVd8AlNYd8dr42tnLk1tLGADeK_yBpR74YMGr0eoV6jK6_GPQzTdbo7pLng4-2y0r7PSNg4-KYuYkFRwQWj83_UGxRQ_7A</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Aris, B</creator><creator>Küçükaslan, Mehmet</creator><general>RGN Publications</general><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170101</creationdate><title>(\Delta\)-Convergence and Uniform Distribution in Lacunary Sense</title><author>Aris, B ; Küçükaslan, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26891878013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Basic converters</topic><topic>Codes</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Numbers</topic><topic>Real numbers</topic><toplevel>online_resources</toplevel><creatorcontrib>Aris, B</creatorcontrib><creatorcontrib>Küçükaslan, Mehmet</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aris, B</au><au>Küçükaslan, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(\Delta\)-Convergence and Uniform Distribution in Lacunary Sense</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>69</spage><pages>69-</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>In this paper, by considering usual partition of \([0, \infty)\) \(\Delta\)-convergence of non-negative real valued sequences is defined. It is shown that every convergent sequence is \(\Delta\)-convergence but the converse is not true, in general. Besides, some basic properties of \(\Delta\)-convergence as well as the second part of this paper by using any lacunary sequences as a partition of non-negative real numbers, lacunary uniform distribution is defined and some inclusion result between uniform distribution modulo 1 and lacunary uniform distribution has been given.</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v8i1.578</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0976-5905 |
ispartof | Communications in Mathematics and Applications, 2017-01, Vol.8 (1), p.69 |
issn | 0976-5905 0975-8607 |
language | eng |
recordid | cdi_proquest_journals_2689187801 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Basic converters Codes Convergence Mathematics Numbers Real numbers |
title | (\Delta\)-Convergence and Uniform Distribution in Lacunary Sense |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(%5CDelta%5C)-Convergence%20and%20Uniform%20Distribution%20in%20Lacunary%20Sense&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=Aris,%20B&rft.date=2017-01-01&rft.volume=8&rft.issue=1&rft.spage=69&rft.pages=69-&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v8i1.578&rft_dat=%3Cproquest%3E2689187801%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689187801&rft_id=info:pmid/&rfr_iscdi=true |