Application of Adaptation HAM for Nonlinear Oscillator Typified as A Mass Attached to A Stretched Elastic Wire

This paper applies the adaptation of homotopy analysis method (AHAM) for the first time to obtained the periodic solutions for the oscillation of a mass attached to a stretched elastic wire. The AHAM approach can be applied directly to the governing equation without rewrite it in a form that does no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics and Applications 2017-01, Vol.8 (2), p.157
1. Verfasser: Bataineh, A Sami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 157
container_title Communications in Mathematics and Applications
container_volume 8
creator Bataineh, A Sami
description This paper applies the adaptation of homotopy analysis method (AHAM) for the first time to obtained the periodic solutions for the oscillation of a mass attached to a stretched elastic wire. The AHAM approach can be applied directly to the governing equation without rewrite it in a form that does not contain the square-root expression. More precisely, with the help of the homotopy polynomials procedure the nonlinear term of the problem can be decompose as a series of polynomials to overcomes the difficulty arising in calculating complicated integrals. A comparative study between AHAM and other existing solutions obtained by several authors is conducted to demonstrate the simplicity and the efficiency of AHAM. The approximate frequency and periodic solution for both small and large amplitude of oscillations show a good agreement with the numerical solution.
doi_str_mv 10.26713/cma.v8i2.706
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2689187765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689187765</sourcerecordid><originalsourceid>FETCH-proquest_journals_26891877653</originalsourceid><addsrcrecordid>eNqNisFKAzEURUNRaNEu3T9wPWNmxkkmy0Eq3bQuLLgsjzSDKWmSJq-Cf2-ofoCre8-5l7GHhtetkE33pE9Yfw22rSUXM7bgSvbVILi8uXZR9Yr3c7bM-cg5b5V4lp1aMD_G6KxGssFDmGA8YKRfWo8bmEKCbfDOeoMJ3rK2ziEVufuOdrLmAJhhhA3mEkSoP4uiUNQ7JUNXXDnMZDV82GTu2e2ELpvlX96xx9fV7mVdxRTOF5NpfwyX5Mu0b8WgmkFK0Xf_e_0AlldQCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689187765</pqid></control><display><type>article</type><title>Application of Adaptation HAM for Nonlinear Oscillator Typified as A Mass Attached to A Stretched Elastic Wire</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bataineh, A Sami</creator><creatorcontrib>Bataineh, A Sami</creatorcontrib><description>This paper applies the adaptation of homotopy analysis method (AHAM) for the first time to obtained the periodic solutions for the oscillation of a mass attached to a stretched elastic wire. The AHAM approach can be applied directly to the governing equation without rewrite it in a form that does not contain the square-root expression. More precisely, with the help of the homotopy polynomials procedure the nonlinear term of the problem can be decompose as a series of polynomials to overcomes the difficulty arising in calculating complicated integrals. A comparative study between AHAM and other existing solutions obtained by several authors is conducted to demonstrate the simplicity and the efficiency of AHAM. The approximate frequency and periodic solution for both small and large amplitude of oscillations show a good agreement with the numerical solution.</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v8i2.706</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Adaptation ; Comparative studies ; Deformation ; Homotopy theory ; Integrals ; Mathematics ; Polynomials ; Wire</subject><ispartof>Communications in Mathematics and Applications, 2017-01, Vol.8 (2), p.157</ispartof><rights>2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Bataineh, A Sami</creatorcontrib><title>Application of Adaptation HAM for Nonlinear Oscillator Typified as A Mass Attached to A Stretched Elastic Wire</title><title>Communications in Mathematics and Applications</title><description>This paper applies the adaptation of homotopy analysis method (AHAM) for the first time to obtained the periodic solutions for the oscillation of a mass attached to a stretched elastic wire. The AHAM approach can be applied directly to the governing equation without rewrite it in a form that does not contain the square-root expression. More precisely, with the help of the homotopy polynomials procedure the nonlinear term of the problem can be decompose as a series of polynomials to overcomes the difficulty arising in calculating complicated integrals. A comparative study between AHAM and other existing solutions obtained by several authors is conducted to demonstrate the simplicity and the efficiency of AHAM. The approximate frequency and periodic solution for both small and large amplitude of oscillations show a good agreement with the numerical solution.</description><subject>Adaptation</subject><subject>Comparative studies</subject><subject>Deformation</subject><subject>Homotopy theory</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Wire</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNisFKAzEURUNRaNEu3T9wPWNmxkkmy0Eq3bQuLLgsjzSDKWmSJq-Cf2-ofoCre8-5l7GHhtetkE33pE9Yfw22rSUXM7bgSvbVILi8uXZR9Yr3c7bM-cg5b5V4lp1aMD_G6KxGssFDmGA8YKRfWo8bmEKCbfDOeoMJ3rK2ziEVufuOdrLmAJhhhA3mEkSoP4uiUNQ7JUNXXDnMZDV82GTu2e2ELpvlX96xx9fV7mVdxRTOF5NpfwyX5Mu0b8WgmkFK0Xf_e_0AlldQCA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Bataineh, A Sami</creator><general>RGN Publications</general><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170101</creationdate><title>Application of Adaptation HAM for Nonlinear Oscillator Typified as A Mass Attached to A Stretched Elastic Wire</title><author>Bataineh, A Sami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26891877653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Comparative studies</topic><topic>Deformation</topic><topic>Homotopy theory</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Wire</topic><toplevel>online_resources</toplevel><creatorcontrib>Bataineh, A Sami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bataineh, A Sami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Adaptation HAM for Nonlinear Oscillator Typified as A Mass Attached to A Stretched Elastic Wire</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>157</spage><pages>157-</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>This paper applies the adaptation of homotopy analysis method (AHAM) for the first time to obtained the periodic solutions for the oscillation of a mass attached to a stretched elastic wire. The AHAM approach can be applied directly to the governing equation without rewrite it in a form that does not contain the square-root expression. More precisely, with the help of the homotopy polynomials procedure the nonlinear term of the problem can be decompose as a series of polynomials to overcomes the difficulty arising in calculating complicated integrals. A comparative study between AHAM and other existing solutions obtained by several authors is conducted to demonstrate the simplicity and the efficiency of AHAM. The approximate frequency and periodic solution for both small and large amplitude of oscillations show a good agreement with the numerical solution.</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v8i2.706</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-5905
ispartof Communications in Mathematics and Applications, 2017-01, Vol.8 (2), p.157
issn 0976-5905
0975-8607
language eng
recordid cdi_proquest_journals_2689187765
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation
Comparative studies
Deformation
Homotopy theory
Integrals
Mathematics
Polynomials
Wire
title Application of Adaptation HAM for Nonlinear Oscillator Typified as A Mass Attached to A Stretched Elastic Wire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Adaptation%20HAM%20for%20Nonlinear%20Oscillator%20Typified%20as%20A%20Mass%20Attached%20to%20A%20Stretched%20Elastic%20Wire&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=Bataineh,%20A%20Sami&rft.date=2017-01-01&rft.volume=8&rft.issue=2&rft.spage=157&rft.pages=157-&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v8i2.706&rft_dat=%3Cproquest%3E2689187765%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689187765&rft_id=info:pmid/&rfr_iscdi=true