Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy
Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to crac...
Gespeichert in:
Veröffentlicht in: | BHM. Berg- und hüttenmännische Monatshefte 2022, Vol.167 (7), p.325-331 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 7 |
container_start_page | 325 |
container_title | BHM. Berg- und hüttenmännische Monatshefte |
container_volume | 167 |
creator | Platl, Jan Rainer, Daniel Leitner, Harald Turk, Christoph Galbusera, Francesco Demir, Ali Gökhan Previtali, Barbara Schnitzer, Ronald |
description | Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases.
A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented. |
doi_str_mv | 10.1007/s00501-022-01238-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689155198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689155198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH9ewFXAdfTeZP6yrINVoWJBXYfMJCmt46QmLTJv47P4ZEZHcOfqbL5zLvcj5AzhAgHKywiQAzLgnAFyUbFhj0ywQMHKXOA-mUACWCWRH5KjGNcAmShLOSGPC7-1_XalO1rrXbSROh9oHXT7suqX1DuqPz_mOtpAF_7dpLiyhs4SaVIhNL5nLlhLZ7b2955Ou84PJ-TA6S7a0988Js-z66f6ls0fbu7q6Zy1HKqBGSxaLaDIsISKo5BOW92gESBdk-tKG9NA4bTJwEqJVSEbkeUaMi4bCaUQx-R83N0E_7azcavWfhf6dFLxIv2a5yirRPGRaoOPMVinNmH1qsOgENS3PDXKU0me-pGnhlQSYykmuF_a8Df9T-sL1-lxdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689155198</pqid></control><display><type>article</type><title>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Platl, Jan ; Rainer, Daniel ; Leitner, Harald ; Turk, Christoph ; Galbusera, Francesco ; Demir, Ali Gökhan ; Previtali, Barbara ; Schnitzer, Ronald</creator><creatorcontrib>Platl, Jan ; Rainer, Daniel ; Leitner, Harald ; Turk, Christoph ; Galbusera, Francesco ; Demir, Ali Gökhan ; Previtali, Barbara ; Schnitzer, Ronald</creatorcontrib><description>Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases.
A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented.</description><identifier>ISSN: 0005-8912</identifier><identifier>EISSN: 1613-7531</identifier><identifier>DOI: 10.1007/s00501-022-01238-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Brittleness ; Carbon ; Carbon content ; Carbon equivalent ; Earth and Environmental Science ; Earth Sciences ; Electron backscatter diffraction ; Failure analysis ; Heat treating ; Hot isostatic pressing ; Intermetallic phases ; Laser applications ; Maraging steels ; Martensite ; Mineral Resources ; Near net shaping ; Nonmetallic inclusions ; Originalarbeit ; Powder beds ; Precipitation hardening steels ; Silicon oxides ; Tool steels</subject><ispartof>BHM. Berg- und hüttenmännische Monatshefte, 2022, Vol.167 (7), p.325-331</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</citedby><cites>FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00501-022-01238-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00501-022-01238-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Platl, Jan</creatorcontrib><creatorcontrib>Rainer, Daniel</creatorcontrib><creatorcontrib>Leitner, Harald</creatorcontrib><creatorcontrib>Turk, Christoph</creatorcontrib><creatorcontrib>Galbusera, Francesco</creatorcontrib><creatorcontrib>Demir, Ali Gökhan</creatorcontrib><creatorcontrib>Previtali, Barbara</creatorcontrib><creatorcontrib>Schnitzer, Ronald</creatorcontrib><title>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</title><title>BHM. Berg- und hüttenmännische Monatshefte</title><addtitle>Berg Huettenmaenn Monatsh</addtitle><description>Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases.
A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented.</description><subject>Brittleness</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Carbon equivalent</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electron backscatter diffraction</subject><subject>Failure analysis</subject><subject>Heat treating</subject><subject>Hot isostatic pressing</subject><subject>Intermetallic phases</subject><subject>Laser applications</subject><subject>Maraging steels</subject><subject>Martensite</subject><subject>Mineral Resources</subject><subject>Near net shaping</subject><subject>Nonmetallic inclusions</subject><subject>Originalarbeit</subject><subject>Powder beds</subject><subject>Precipitation hardening steels</subject><subject>Silicon oxides</subject><subject>Tool steels</subject><issn>0005-8912</issn><issn>1613-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEUhYMoWH9ewFXAdfTeZP6yrINVoWJBXYfMJCmt46QmLTJv47P4ZEZHcOfqbL5zLvcj5AzhAgHKywiQAzLgnAFyUbFhj0ywQMHKXOA-mUACWCWRH5KjGNcAmShLOSGPC7-1_XalO1rrXbSROh9oHXT7suqX1DuqPz_mOtpAF_7dpLiyhs4SaVIhNL5nLlhLZ7b2955Ou84PJ-TA6S7a0988Js-z66f6ls0fbu7q6Zy1HKqBGSxaLaDIsISKo5BOW92gESBdk-tKG9NA4bTJwEqJVSEbkeUaMi4bCaUQx-R83N0E_7azcavWfhf6dFLxIv2a5yirRPGRaoOPMVinNmH1qsOgENS3PDXKU0me-pGnhlQSYykmuF_a8Df9T-sL1-lxdw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Platl, Jan</creator><creator>Rainer, Daniel</creator><creator>Leitner, Harald</creator><creator>Turk, Christoph</creator><creator>Galbusera, Francesco</creator><creator>Demir, Ali Gökhan</creator><creator>Previtali, Barbara</creator><creator>Schnitzer, Ronald</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</title><author>Platl, Jan ; Rainer, Daniel ; Leitner, Harald ; Turk, Christoph ; Galbusera, Francesco ; Demir, Ali Gökhan ; Previtali, Barbara ; Schnitzer, Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brittleness</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Carbon equivalent</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electron backscatter diffraction</topic><topic>Failure analysis</topic><topic>Heat treating</topic><topic>Hot isostatic pressing</topic><topic>Intermetallic phases</topic><topic>Laser applications</topic><topic>Maraging steels</topic><topic>Martensite</topic><topic>Mineral Resources</topic><topic>Near net shaping</topic><topic>Nonmetallic inclusions</topic><topic>Originalarbeit</topic><topic>Powder beds</topic><topic>Precipitation hardening steels</topic><topic>Silicon oxides</topic><topic>Tool steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platl, Jan</creatorcontrib><creatorcontrib>Rainer, Daniel</creatorcontrib><creatorcontrib>Leitner, Harald</creatorcontrib><creatorcontrib>Turk, Christoph</creatorcontrib><creatorcontrib>Galbusera, Francesco</creatorcontrib><creatorcontrib>Demir, Ali Gökhan</creatorcontrib><creatorcontrib>Previtali, Barbara</creatorcontrib><creatorcontrib>Schnitzer, Ronald</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>BHM. Berg- und hüttenmännische Monatshefte</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platl, Jan</au><au>Rainer, Daniel</au><au>Leitner, Harald</au><au>Turk, Christoph</au><au>Galbusera, Francesco</au><au>Demir, Ali Gökhan</au><au>Previtali, Barbara</au><au>Schnitzer, Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</atitle><jtitle>BHM. Berg- und hüttenmännische Monatshefte</jtitle><stitle>Berg Huettenmaenn Monatsh</stitle><date>2022</date><risdate>2022</risdate><volume>167</volume><issue>7</issue><spage>325</spage><epage>331</epage><pages>325-331</pages><issn>0005-8912</issn><eissn>1613-7531</eissn><abstract>Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases.
A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00501-022-01238-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-8912 |
ispartof | BHM. Berg- und hüttenmännische Monatshefte, 2022, Vol.167 (7), p.325-331 |
issn | 0005-8912 1613-7531 |
language | eng |
recordid | cdi_proquest_journals_2689155198 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brittleness Carbon Carbon content Carbon equivalent Earth and Environmental Science Earth Sciences Electron backscatter diffraction Failure analysis Heat treating Hot isostatic pressing Intermetallic phases Laser applications Maraging steels Martensite Mineral Resources Near net shaping Nonmetallic inclusions Originalarbeit Powder beds Precipitation hardening steels Silicon oxides Tool steels |
title | Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20Causes%20for%20Cracking%20of%20a%C2%A0Laser%20Powder%20Bed%20Fused%20Carbon-free%20FeCoMo%20Alloy&rft.jtitle=BHM.%20Berg-%20und%20h%C3%BCttenm%C3%A4nnische%20Monatshefte&rft.au=Platl,%20Jan&rft.date=2022&rft.volume=167&rft.issue=7&rft.spage=325&rft.epage=331&rft.pages=325-331&rft.issn=0005-8912&rft.eissn=1613-7531&rft_id=info:doi/10.1007/s00501-022-01238-y&rft_dat=%3Cproquest_cross%3E2689155198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689155198&rft_id=info:pmid/&rfr_iscdi=true |