Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy

Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to crac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BHM. Berg- und hüttenmännische Monatshefte 2022, Vol.167 (7), p.325-331
Hauptverfasser: Platl, Jan, Rainer, Daniel, Leitner, Harald, Turk, Christoph, Galbusera, Francesco, Demir, Ali Gökhan, Previtali, Barbara, Schnitzer, Ronald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 7
container_start_page 325
container_title BHM. Berg- und hüttenmännische Monatshefte
container_volume 167
creator Platl, Jan
Rainer, Daniel
Leitner, Harald
Turk, Christoph
Galbusera, Francesco
Demir, Ali Gökhan
Previtali, Barbara
Schnitzer, Ronald
description Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases. A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented.
doi_str_mv 10.1007/s00501-022-01238-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689155198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689155198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH9ewFXAdfTeZP6yrINVoWJBXYfMJCmt46QmLTJv47P4ZEZHcOfqbL5zLvcj5AzhAgHKywiQAzLgnAFyUbFhj0ywQMHKXOA-mUACWCWRH5KjGNcAmShLOSGPC7-1_XalO1rrXbSROh9oHXT7suqX1DuqPz_mOtpAF_7dpLiyhs4SaVIhNL5nLlhLZ7b2955Ou84PJ-TA6S7a0988Js-z66f6ls0fbu7q6Zy1HKqBGSxaLaDIsISKo5BOW92gESBdk-tKG9NA4bTJwEqJVSEbkeUaMi4bCaUQx-R83N0E_7azcavWfhf6dFLxIv2a5yirRPGRaoOPMVinNmH1qsOgENS3PDXKU0me-pGnhlQSYykmuF_a8Df9T-sL1-lxdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689155198</pqid></control><display><type>article</type><title>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Platl, Jan ; Rainer, Daniel ; Leitner, Harald ; Turk, Christoph ; Galbusera, Francesco ; Demir, Ali Gökhan ; Previtali, Barbara ; Schnitzer, Ronald</creator><creatorcontrib>Platl, Jan ; Rainer, Daniel ; Leitner, Harald ; Turk, Christoph ; Galbusera, Francesco ; Demir, Ali Gökhan ; Previtali, Barbara ; Schnitzer, Ronald</creatorcontrib><description>Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases. A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented.</description><identifier>ISSN: 0005-8912</identifier><identifier>EISSN: 1613-7531</identifier><identifier>DOI: 10.1007/s00501-022-01238-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Brittleness ; Carbon ; Carbon content ; Carbon equivalent ; Earth and Environmental Science ; Earth Sciences ; Electron backscatter diffraction ; Failure analysis ; Heat treating ; Hot isostatic pressing ; Intermetallic phases ; Laser applications ; Maraging steels ; Martensite ; Mineral Resources ; Near net shaping ; Nonmetallic inclusions ; Originalarbeit ; Powder beds ; Precipitation hardening steels ; Silicon oxides ; Tool steels</subject><ispartof>BHM. Berg- und hüttenmännische Monatshefte, 2022, Vol.167 (7), p.325-331</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</citedby><cites>FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00501-022-01238-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00501-022-01238-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Platl, Jan</creatorcontrib><creatorcontrib>Rainer, Daniel</creatorcontrib><creatorcontrib>Leitner, Harald</creatorcontrib><creatorcontrib>Turk, Christoph</creatorcontrib><creatorcontrib>Galbusera, Francesco</creatorcontrib><creatorcontrib>Demir, Ali Gökhan</creatorcontrib><creatorcontrib>Previtali, Barbara</creatorcontrib><creatorcontrib>Schnitzer, Ronald</creatorcontrib><title>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</title><title>BHM. Berg- und hüttenmännische Monatshefte</title><addtitle>Berg Huettenmaenn Monatsh</addtitle><description>Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases. A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented.</description><subject>Brittleness</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Carbon equivalent</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electron backscatter diffraction</subject><subject>Failure analysis</subject><subject>Heat treating</subject><subject>Hot isostatic pressing</subject><subject>Intermetallic phases</subject><subject>Laser applications</subject><subject>Maraging steels</subject><subject>Martensite</subject><subject>Mineral Resources</subject><subject>Near net shaping</subject><subject>Nonmetallic inclusions</subject><subject>Originalarbeit</subject><subject>Powder beds</subject><subject>Precipitation hardening steels</subject><subject>Silicon oxides</subject><subject>Tool steels</subject><issn>0005-8912</issn><issn>1613-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEUhYMoWH9ewFXAdfTeZP6yrINVoWJBXYfMJCmt46QmLTJv47P4ZEZHcOfqbL5zLvcj5AzhAgHKywiQAzLgnAFyUbFhj0ywQMHKXOA-mUACWCWRH5KjGNcAmShLOSGPC7-1_XalO1rrXbSROh9oHXT7suqX1DuqPz_mOtpAF_7dpLiyhs4SaVIhNL5nLlhLZ7b2955Ou84PJ-TA6S7a0988Js-z66f6ls0fbu7q6Zy1HKqBGSxaLaDIsISKo5BOW92gESBdk-tKG9NA4bTJwEqJVSEbkeUaMi4bCaUQx-R83N0E_7azcavWfhf6dFLxIv2a5yirRPGRaoOPMVinNmH1qsOgENS3PDXKU0me-pGnhlQSYykmuF_a8Df9T-sL1-lxdw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Platl, Jan</creator><creator>Rainer, Daniel</creator><creator>Leitner, Harald</creator><creator>Turk, Christoph</creator><creator>Galbusera, Francesco</creator><creator>Demir, Ali Gökhan</creator><creator>Previtali, Barbara</creator><creator>Schnitzer, Ronald</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</title><author>Platl, Jan ; Rainer, Daniel ; Leitner, Harald ; Turk, Christoph ; Galbusera, Francesco ; Demir, Ali Gökhan ; Previtali, Barbara ; Schnitzer, Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208y-d16ca306417082139faeab1d309fb5a8addb06fad40e991869b345a0429b90733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brittleness</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Carbon equivalent</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electron backscatter diffraction</topic><topic>Failure analysis</topic><topic>Heat treating</topic><topic>Hot isostatic pressing</topic><topic>Intermetallic phases</topic><topic>Laser applications</topic><topic>Maraging steels</topic><topic>Martensite</topic><topic>Mineral Resources</topic><topic>Near net shaping</topic><topic>Nonmetallic inclusions</topic><topic>Originalarbeit</topic><topic>Powder beds</topic><topic>Precipitation hardening steels</topic><topic>Silicon oxides</topic><topic>Tool steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platl, Jan</creatorcontrib><creatorcontrib>Rainer, Daniel</creatorcontrib><creatorcontrib>Leitner, Harald</creatorcontrib><creatorcontrib>Turk, Christoph</creatorcontrib><creatorcontrib>Galbusera, Francesco</creatorcontrib><creatorcontrib>Demir, Ali Gökhan</creatorcontrib><creatorcontrib>Previtali, Barbara</creatorcontrib><creatorcontrib>Schnitzer, Ronald</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>BHM. Berg- und hüttenmännische Monatshefte</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platl, Jan</au><au>Rainer, Daniel</au><au>Leitner, Harald</au><au>Turk, Christoph</au><au>Galbusera, Francesco</au><au>Demir, Ali Gökhan</au><au>Previtali, Barbara</au><au>Schnitzer, Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy</atitle><jtitle>BHM. Berg- und hüttenmännische Monatshefte</jtitle><stitle>Berg Huettenmaenn Monatsh</stitle><date>2022</date><risdate>2022</risdate><volume>167</volume><issue>7</issue><spage>325</spage><epage>331</epage><pages>325-331</pages><issn>0005-8912</issn><eissn>1613-7531</eissn><abstract>Compared to hot isostatic pressing or casting, laser-based powder bed fusion (LPBF) facilitates a near-net-shape fabrication of geometrically complex tools leading to a strongly reduced post-processing time and effort and consequently lower costs. Conventional tool steels are, however, prone to cracking during LPBF due to their high carbon equivalent numbers. In contrast, carbon-free maraging steels promise an enhanced processability due to the formation of a soft martensite, which is subsequently hardened by the precipitation of intermetallic phases. A novel maraging steel for cutting applications (Fe25Co15Mo (wt%)) has been developed in recent years, and the present contribution deals with the processability of this novel alloy as a candidate for LPBF. However, severe cracking has been observed despite its low carbon content. The scanning electron microscopy revealed transcrystalline cleavage fracture plains on the crack surfaces. It is assumed that silicon oxide inclusions, which were verified by energy dispersive X‑ray spectroscopy, are responsible for the brittle failure. The electron backscatter diffraction analysis revealed coarse elongated grains, which may also contribute to cracking. The differential scanning calorimetry could not confirm an influence of brittle ordered FeCo domains that are potentially formed during cooling. In conclusion, solution approaches for the fabrication of crack-free parts are presented.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00501-022-01238-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-8912
ispartof BHM. Berg- und hüttenmännische Monatshefte, 2022, Vol.167 (7), p.325-331
issn 0005-8912
1613-7531
language eng
recordid cdi_proquest_journals_2689155198
source SpringerLink Journals - AutoHoldings
subjects Brittleness
Carbon
Carbon content
Carbon equivalent
Earth and Environmental Science
Earth Sciences
Electron backscatter diffraction
Failure analysis
Heat treating
Hot isostatic pressing
Intermetallic phases
Laser applications
Maraging steels
Martensite
Mineral Resources
Near net shaping
Nonmetallic inclusions
Originalarbeit
Powder beds
Precipitation hardening steels
Silicon oxides
Tool steels
title Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20Causes%20for%20Cracking%20of%20a%C2%A0Laser%20Powder%20Bed%20Fused%20Carbon-free%20FeCoMo%20Alloy&rft.jtitle=BHM.%20Berg-%20und%20h%C3%BCttenm%C3%A4nnische%20Monatshefte&rft.au=Platl,%20Jan&rft.date=2022&rft.volume=167&rft.issue=7&rft.spage=325&rft.epage=331&rft.pages=325-331&rft.issn=0005-8912&rft.eissn=1613-7531&rft_id=info:doi/10.1007/s00501-022-01238-y&rft_dat=%3Cproquest_cross%3E2689155198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689155198&rft_id=info:pmid/&rfr_iscdi=true