Determining a risk management staffing model
Health care organizations have struggled to establish par levels of risk management personnel needed to effectively accomplish risk management functions. This study set out to determine whether a par level staffing model could be established utilizing a nonclinical role to enable the clinical risk m...
Gespeichert in:
Veröffentlicht in: | Journal of healthcare risk management 2022-07, Vol.42 (1), p.37-43 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Journal of healthcare risk management |
container_volume | 42 |
creator | Moritz, Diane L. Nichols, Joyce K. Stein, Karen M. Glusko, Lydia A. Tan, Michele M. Hileman, Melissa M. |
description | Health care organizations have struggled to establish par levels of risk management personnel needed to effectively accomplish risk management functions. This study set out to determine whether a par level staffing model could be established utilizing a nonclinical role to enable the clinical risk manager to focus on key risk management core functions, therefore enhancing risk management department efficacy. Utilizing a model published by Howard and Felton, Trinity Health Insurance and Risk Management Services (IRMS) evaluated risk management staffing according to our core functions and workload and determined recommended risk management staffing levels for our organization. Eighteen Risk Managers from 13 acute care hospitals participated in a 2‐week time study documenting time spent and estimated time needed to complete core risk management functions. By quantifying the time needed to complete risk management core functions and evaluating which activity could best be completed by specific roles, we have established both a recommended baseline staffing level of one risk manager FTE per 6650 monthly average adjusted patient days (APD), as well as a work distribution model of 70% clinical and 30% nonclinical split of risk management FTEs for our hospitals. Organizations can similarly evaluate their staffing according to their core functions and workload. |
doi_str_mv | 10.1002/jhrm.21513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688880144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688880144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2083-ccde9ef577fed1b870f60e371bbf7b3052ce02460ca091632121dae40da9b03a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqGw4QsisUOkzNiunSxReRRUhIRgbTnJuCQ0SbFTof49KWHNbGYxZ-6VDmPnCFME4Nf1h2-mHGcoDljEQUICqcJDFiFomUid6WN2EkINoLRSMmJXt9STb6q2alexjX0VPuPGtnZFDbV9HHrr3P7UdCWtT9mRs-tAZ397wt7v797mi2T58vA4v1kmBYdUJEVRUkZuprWjEvNUg1NAQmOeO50LmPGCgEsFhYUMleDIsbQkobRZDsKKCbsYcze--9pS6E3dbX07VBqu0mEApRyoy5EqfBeCJ2c2vmqs3xkEs7dh9jbMr40BxhH-rta0-4c0T4vX5_HnByd2YOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688880144</pqid></control><display><type>article</type><title>Determining a risk management staffing model</title><source>Access via Wiley Online Library</source><creator>Moritz, Diane L. ; Nichols, Joyce K. ; Stein, Karen M. ; Glusko, Lydia A. ; Tan, Michele M. ; Hileman, Melissa M.</creator><creatorcontrib>Moritz, Diane L. ; Nichols, Joyce K. ; Stein, Karen M. ; Glusko, Lydia A. ; Tan, Michele M. ; Hileman, Melissa M.</creatorcontrib><description>Health care organizations have struggled to establish par levels of risk management personnel needed to effectively accomplish risk management functions. This study set out to determine whether a par level staffing model could be established utilizing a nonclinical role to enable the clinical risk manager to focus on key risk management core functions, therefore enhancing risk management department efficacy. Utilizing a model published by Howard and Felton, Trinity Health Insurance and Risk Management Services (IRMS) evaluated risk management staffing according to our core functions and workload and determined recommended risk management staffing levels for our organization. Eighteen Risk Managers from 13 acute care hospitals participated in a 2‐week time study documenting time spent and estimated time needed to complete core risk management functions. By quantifying the time needed to complete risk management core functions and evaluating which activity could best be completed by specific roles, we have established both a recommended baseline staffing level of one risk manager FTE per 6650 monthly average adjusted patient days (APD), as well as a work distribution model of 70% clinical and 30% nonclinical split of risk management FTEs for our hospitals. Organizations can similarly evaluate their staffing according to their core functions and workload.</description><identifier>ISSN: 1074-4797</identifier><identifier>EISSN: 2040-0861</identifier><identifier>DOI: 10.1002/jhrm.21513</identifier><language>eng</language><publisher>Chicago: Wiley Subscription Services, Inc</publisher><subject>Workforce planning ; Workloads</subject><ispartof>Journal of healthcare risk management, 2022-07, Vol.42 (1), p.37-43</ispartof><rights>2022 American Society for Healthcare Risk Management of the American Hospital Association.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2083-ccde9ef577fed1b870f60e371bbf7b3052ce02460ca091632121dae40da9b03a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjhrm.21513$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjhrm.21513$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Moritz, Diane L.</creatorcontrib><creatorcontrib>Nichols, Joyce K.</creatorcontrib><creatorcontrib>Stein, Karen M.</creatorcontrib><creatorcontrib>Glusko, Lydia A.</creatorcontrib><creatorcontrib>Tan, Michele M.</creatorcontrib><creatorcontrib>Hileman, Melissa M.</creatorcontrib><title>Determining a risk management staffing model</title><title>Journal of healthcare risk management</title><description>Health care organizations have struggled to establish par levels of risk management personnel needed to effectively accomplish risk management functions. This study set out to determine whether a par level staffing model could be established utilizing a nonclinical role to enable the clinical risk manager to focus on key risk management core functions, therefore enhancing risk management department efficacy. Utilizing a model published by Howard and Felton, Trinity Health Insurance and Risk Management Services (IRMS) evaluated risk management staffing according to our core functions and workload and determined recommended risk management staffing levels for our organization. Eighteen Risk Managers from 13 acute care hospitals participated in a 2‐week time study documenting time spent and estimated time needed to complete core risk management functions. By quantifying the time needed to complete risk management core functions and evaluating which activity could best be completed by specific roles, we have established both a recommended baseline staffing level of one risk manager FTE per 6650 monthly average adjusted patient days (APD), as well as a work distribution model of 70% clinical and 30% nonclinical split of risk management FTEs for our hospitals. Organizations can similarly evaluate their staffing according to their core functions and workload.</description><subject>Workforce planning</subject><subject>Workloads</subject><issn>1074-4797</issn><issn>2040-0861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqGw4QsisUOkzNiunSxReRRUhIRgbTnJuCQ0SbFTof49KWHNbGYxZ-6VDmPnCFME4Nf1h2-mHGcoDljEQUICqcJDFiFomUid6WN2EkINoLRSMmJXt9STb6q2alexjX0VPuPGtnZFDbV9HHrr3P7UdCWtT9mRs-tAZ397wt7v797mi2T58vA4v1kmBYdUJEVRUkZuprWjEvNUg1NAQmOeO50LmPGCgEsFhYUMleDIsbQkobRZDsKKCbsYcze--9pS6E3dbX07VBqu0mEApRyoy5EqfBeCJ2c2vmqs3xkEs7dh9jbMr40BxhH-rta0-4c0T4vX5_HnByd2YOY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Moritz, Diane L.</creator><creator>Nichols, Joyce K.</creator><creator>Stein, Karen M.</creator><creator>Glusko, Lydia A.</creator><creator>Tan, Michele M.</creator><creator>Hileman, Melissa M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Determining a risk management staffing model</title><author>Moritz, Diane L. ; Nichols, Joyce K. ; Stein, Karen M. ; Glusko, Lydia A. ; Tan, Michele M. ; Hileman, Melissa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2083-ccde9ef577fed1b870f60e371bbf7b3052ce02460ca091632121dae40da9b03a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Workforce planning</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moritz, Diane L.</creatorcontrib><creatorcontrib>Nichols, Joyce K.</creatorcontrib><creatorcontrib>Stein, Karen M.</creatorcontrib><creatorcontrib>Glusko, Lydia A.</creatorcontrib><creatorcontrib>Tan, Michele M.</creatorcontrib><creatorcontrib>Hileman, Melissa M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of healthcare risk management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moritz, Diane L.</au><au>Nichols, Joyce K.</au><au>Stein, Karen M.</au><au>Glusko, Lydia A.</au><au>Tan, Michele M.</au><au>Hileman, Melissa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining a risk management staffing model</atitle><jtitle>Journal of healthcare risk management</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>42</volume><issue>1</issue><spage>37</spage><epage>43</epage><pages>37-43</pages><issn>1074-4797</issn><eissn>2040-0861</eissn><abstract>Health care organizations have struggled to establish par levels of risk management personnel needed to effectively accomplish risk management functions. This study set out to determine whether a par level staffing model could be established utilizing a nonclinical role to enable the clinical risk manager to focus on key risk management core functions, therefore enhancing risk management department efficacy. Utilizing a model published by Howard and Felton, Trinity Health Insurance and Risk Management Services (IRMS) evaluated risk management staffing according to our core functions and workload and determined recommended risk management staffing levels for our organization. Eighteen Risk Managers from 13 acute care hospitals participated in a 2‐week time study documenting time spent and estimated time needed to complete core risk management functions. By quantifying the time needed to complete risk management core functions and evaluating which activity could best be completed by specific roles, we have established both a recommended baseline staffing level of one risk manager FTE per 6650 monthly average adjusted patient days (APD), as well as a work distribution model of 70% clinical and 30% nonclinical split of risk management FTEs for our hospitals. Organizations can similarly evaluate their staffing according to their core functions and workload.</abstract><cop>Chicago</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jhrm.21513</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-4797 |
ispartof | Journal of healthcare risk management, 2022-07, Vol.42 (1), p.37-43 |
issn | 1074-4797 2040-0861 |
language | eng |
recordid | cdi_proquest_journals_2688880144 |
source | Access via Wiley Online Library |
subjects | Workforce planning Workloads |
title | Determining a risk management staffing model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20a%20risk%20management%20staffing%20model&rft.jtitle=Journal%20of%20healthcare%20risk%20management&rft.au=Moritz,%20Diane%20L.&rft.date=2022-07-01&rft.volume=42&rft.issue=1&rft.spage=37&rft.epage=43&rft.pages=37-43&rft.issn=1074-4797&rft.eissn=2040-0861&rft_id=info:doi/10.1002/jhrm.21513&rft_dat=%3Cproquest_cross%3E2688880144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688880144&rft_id=info:pmid/&rfr_iscdi=true |