Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations

In this article a spectral Galerkin approximation of fractional advection diffusion optimal control problem with state constraint in L2 norm is discussed. The continuous first order optimality condition is derived. Weighted Jacobi polynomials are used to approximate the state and adjoint state. A pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2022-09, Vol.38 (5), p.1526-1542
Hauptverfasser: Wang, Fangyuan, Zhou, Zhaojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1542
container_issue 5
container_start_page 1526
container_title Numerical methods for partial differential equations
container_volume 38
creator Wang, Fangyuan
Zhou, Zhaojie
description In this article a spectral Galerkin approximation of fractional advection diffusion optimal control problem with state constraint in L2 norm is discussed. The continuous first order optimality condition is derived. Weighted Jacobi polynomials are used to approximate the state and adjoint state. A priori error estimates for state, adjoint state, and control variables in Hα/2 and weighted L2 norms are derived. Numerical examples are presented to verify the theoretical findings.
doi_str_mv 10.1002/num.22853
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688834126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688834126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2573-a21bdbf697d45d046fb8df964ad89473b7b9b47435113a204c58f5def8dc1c253</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUw8AeWmBjS2o6T2COqoCAVGKASm-XEtkhJ49R2qLrxCXwjX4LbsDK9q6vzrt67AFxiNMEIkWnbryeEsCw9AiOMOEsIJfkxGKGC8gRn_O0UnHm_QgjjDPMR2L50ugpONnAuG-0-6haudXi3ChrroA8yaFjZ1kekbrWCtgv1OtLRC8420BponKxCbdvoSvWpD_rn61vVxvR-0E4PCNSbXu6FPwcnRjZeX_zNMVje3b7O7pPF8_xhdrNIKpIVaSIJLlVpcl4omilEc1MyZXhOpWKcFmlZlLykBU0zjFNJEK0yZjKlDVMVjhHpGFwNuZ2zm177IFa2d_FWL0jOGEspJnmkrgeqctZ7p43oXHzT7QRGYt-riL2KQ6-RnQ7stm707n9QPC0fh41fNEJ_AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688834126</pqid></control><display><type>article</type><title>Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations</title><source>Wiley Journals</source><creator>Wang, Fangyuan ; Zhou, Zhaojie</creator><creatorcontrib>Wang, Fangyuan ; Zhou, Zhaojie</creatorcontrib><description>In this article a spectral Galerkin approximation of fractional advection diffusion optimal control problem with state constraint in L2 norm is discussed. The continuous first order optimality condition is derived. Weighted Jacobi polynomials are used to approximate the state and adjoint state. A priori error estimates for state, adjoint state, and control variables in Hα/2 and weighted L2 norms are derived. Numerical examples are presented to verify the theoretical findings.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22853</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>a priori error estimate ; Advection ; Constraints ; fractional advection diffusion reaction equation ; Galerkin method ; Norms ; Optimal control ; optimal control problem ; Optimization ; Polynomials ; spectral Galerkin method</subject><ispartof>Numerical methods for partial differential equations, 2022-09, Vol.38 (5), p.1526-1542</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2573-a21bdbf697d45d046fb8df964ad89473b7b9b47435113a204c58f5def8dc1c253</cites><orcidid>0000-0003-0499-1545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22853$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22853$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Fangyuan</creatorcontrib><creatorcontrib>Zhou, Zhaojie</creatorcontrib><title>Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations</title><title>Numerical methods for partial differential equations</title><description>In this article a spectral Galerkin approximation of fractional advection diffusion optimal control problem with state constraint in L2 norm is discussed. The continuous first order optimality condition is derived. Weighted Jacobi polynomials are used to approximate the state and adjoint state. A priori error estimates for state, adjoint state, and control variables in Hα/2 and weighted L2 norms are derived. Numerical examples are presented to verify the theoretical findings.</description><subject>a priori error estimate</subject><subject>Advection</subject><subject>Constraints</subject><subject>fractional advection diffusion reaction equation</subject><subject>Galerkin method</subject><subject>Norms</subject><subject>Optimal control</subject><subject>optimal control problem</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>spectral Galerkin method</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUw8AeWmBjS2o6T2COqoCAVGKASm-XEtkhJ49R2qLrxCXwjX4LbsDK9q6vzrt67AFxiNMEIkWnbryeEsCw9AiOMOEsIJfkxGKGC8gRn_O0UnHm_QgjjDPMR2L50ugpONnAuG-0-6haudXi3ChrroA8yaFjZ1kekbrWCtgv1OtLRC8420BponKxCbdvoSvWpD_rn61vVxvR-0E4PCNSbXu6FPwcnRjZeX_zNMVje3b7O7pPF8_xhdrNIKpIVaSIJLlVpcl4omilEc1MyZXhOpWKcFmlZlLykBU0zjFNJEK0yZjKlDVMVjhHpGFwNuZ2zm177IFa2d_FWL0jOGEspJnmkrgeqctZ7p43oXHzT7QRGYt-riL2KQ6-RnQ7stm707n9QPC0fh41fNEJ_AA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Wang, Fangyuan</creator><creator>Zhou, Zhaojie</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0499-1545</orcidid></search><sort><creationdate>202209</creationdate><title>Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations</title><author>Wang, Fangyuan ; Zhou, Zhaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2573-a21bdbf697d45d046fb8df964ad89473b7b9b47435113a204c58f5def8dc1c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>a priori error estimate</topic><topic>Advection</topic><topic>Constraints</topic><topic>fractional advection diffusion reaction equation</topic><topic>Galerkin method</topic><topic>Norms</topic><topic>Optimal control</topic><topic>optimal control problem</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>spectral Galerkin method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fangyuan</creatorcontrib><creatorcontrib>Zhou, Zhaojie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fangyuan</au><au>Zhou, Zhaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2022-09</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>1526</spage><epage>1542</epage><pages>1526-1542</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this article a spectral Galerkin approximation of fractional advection diffusion optimal control problem with state constraint in L2 norm is discussed. The continuous first order optimality condition is derived. Weighted Jacobi polynomials are used to approximate the state and adjoint state. A priori error estimates for state, adjoint state, and control variables in Hα/2 and weighted L2 norms are derived. Numerical examples are presented to verify the theoretical findings.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22853</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-0499-1545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2022-09, Vol.38 (5), p.1526-1542
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2688834126
source Wiley Journals
subjects a priori error estimate
Advection
Constraints
fractional advection diffusion reaction equation
Galerkin method
Norms
Optimal control
optimal control problem
Optimization
Polynomials
spectral Galerkin method
title Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Galerkin%20method%20for%20state%20constrained%20optimal%20control%20of%20fractional%20advection%E2%80%90diffusion%E2%80%90reaction%20equations&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Wang,%20Fangyuan&rft.date=2022-09&rft.volume=38&rft.issue=5&rft.spage=1526&rft.epage=1542&rft.pages=1526-1542&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22853&rft_dat=%3Cproquest_cross%3E2688834126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688834126&rft_id=info:pmid/&rfr_iscdi=true