Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics
Mechanical resonators are emerging as an important new platform for quantum science and technologies. A large number of proposals for using them to store, process and transduce quantum information motivates the development of increasingly sophisticated techniques for controlling mechanical motion in...
Gespeichert in:
Veröffentlicht in: | Nature physics 2022-07, Vol.18 (7), p.794-799 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 799 |
---|---|
container_issue | 7 |
container_start_page | 794 |
container_title | Nature physics |
container_volume | 18 |
creator | von Lüpke, Uwe Yang, Yu Bild, Marius Michaud, Laurent Fadel, Matteo Chu, Yiwen |
description | Mechanical resonators are emerging as an important new platform for quantum science and technologies. A large number of proposals for using them to store, process and transduce quantum information motivates the development of increasingly sophisticated techniques for controlling mechanical motion in the quantum regime. By interfacing mechanical resonators with superconducting circuits, circuit quantum acoustodynamics can make a variety of important tools available for manipulating and measuring motional quantum states. Here we demonstrate the direct measurements of phonon number distribution and parity of non-classical mechanical states. We do this by operating our system in the strong dispersive regime, where a superconducting qubit can be used to spectroscopically resolve the phonon Fock states. These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors. Furthermore, our results open the door for performing even more complex quantum algorithms using mechanical systems, such as quantum error correction and multimode operations.
Mechanical resonators combined with superconducting circuits are a promising platform for controlling non-classical mechanical states. Here this platform is used to directly measure the parity of a motional quantum state. |
doi_str_mv | 10.1038/s41567-022-01591-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688786143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688786143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-89eb6600189b8b49514378e42e2ad92175f5f0fbd7112b5abacefa217262fcef3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA62pOmrTpUgZvMKALZx3S9mTMYNuZJBX69kYrunN1fg7_BT5CLoFdA8vVTRAgizJjnGcMZAUZPyILKIXMuFBw_KvL_JSchbBjTPAC8gXZvBjv4kQ7NGH02GEfqetpfEMaoh_6LW1d2KMP7gOpx63rkA6WNs43o4v0MJo-jh01zTCGOLRTbzrXhHNyYs17wIufuySb-7vX1WO2fn54Wt2usyaHKmaqwrooGANV1aoWlQSRlwoFR27aikMprbTM1m0JwGtpatOgNenPC26TzJfkau7d--EwYoh6N4y-T5OaF0qVqkiNycVnV-OHEDxavfeuM37SwPQXPj3j0wmf_saneQrlcygkc79F_1f9T-oTAVx0LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688786143</pqid></control><display><type>article</type><title>Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics</title><source>Springer Journals</source><source>Nature</source><creator>von Lüpke, Uwe ; Yang, Yu ; Bild, Marius ; Michaud, Laurent ; Fadel, Matteo ; Chu, Yiwen</creator><creatorcontrib>von Lüpke, Uwe ; Yang, Yu ; Bild, Marius ; Michaud, Laurent ; Fadel, Matteo ; Chu, Yiwen</creatorcontrib><description>Mechanical resonators are emerging as an important new platform for quantum science and technologies. A large number of proposals for using them to store, process and transduce quantum information motivates the development of increasingly sophisticated techniques for controlling mechanical motion in the quantum regime. By interfacing mechanical resonators with superconducting circuits, circuit quantum acoustodynamics can make a variety of important tools available for manipulating and measuring motional quantum states. Here we demonstrate the direct measurements of phonon number distribution and parity of non-classical mechanical states. We do this by operating our system in the strong dispersive regime, where a superconducting qubit can be used to spectroscopically resolve the phonon Fock states. These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors. Furthermore, our results open the door for performing even more complex quantum algorithms using mechanical systems, such as quantum error correction and multimode operations.
Mechanical resonators combined with superconducting circuits are a promising platform for controlling non-classical mechanical states. Here this platform is used to directly measure the parity of a motional quantum state.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01591-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1139 ; 639/766/483/2802 ; Acoustics ; Algorithms ; Atomic ; Circuits ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Dispersion ; Error correction ; Error correction & detection ; Fock state ; Mathematical and Computational Physics ; Mechanical systems ; Molecular ; Optical and Plasma Physics ; Parity ; Phonons ; Physics ; Physics and Astronomy ; Quantum phenomena ; Qubits (quantum computing) ; Resonators ; Superconductivity ; Theoretical</subject><ispartof>Nature physics, 2022-07, Vol.18 (7), p.794-799</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-89eb6600189b8b49514378e42e2ad92175f5f0fbd7112b5abacefa217262fcef3</citedby><cites>FETCH-LOGICAL-c319t-89eb6600189b8b49514378e42e2ad92175f5f0fbd7112b5abacefa217262fcef3</cites><orcidid>0000-0003-3653-0030 ; 0000-0001-7067-4236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01591-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01591-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>von Lüpke, Uwe</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Bild, Marius</creatorcontrib><creatorcontrib>Michaud, Laurent</creatorcontrib><creatorcontrib>Fadel, Matteo</creatorcontrib><creatorcontrib>Chu, Yiwen</creatorcontrib><title>Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Mechanical resonators are emerging as an important new platform for quantum science and technologies. A large number of proposals for using them to store, process and transduce quantum information motivates the development of increasingly sophisticated techniques for controlling mechanical motion in the quantum regime. By interfacing mechanical resonators with superconducting circuits, circuit quantum acoustodynamics can make a variety of important tools available for manipulating and measuring motional quantum states. Here we demonstrate the direct measurements of phonon number distribution and parity of non-classical mechanical states. We do this by operating our system in the strong dispersive regime, where a superconducting qubit can be used to spectroscopically resolve the phonon Fock states. These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors. Furthermore, our results open the door for performing even more complex quantum algorithms using mechanical systems, such as quantum error correction and multimode operations.
Mechanical resonators combined with superconducting circuits are a promising platform for controlling non-classical mechanical states. Here this platform is used to directly measure the parity of a motional quantum state.</description><subject>639/766/483/1139</subject><subject>639/766/483/2802</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Atomic</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dispersion</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Fock state</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical systems</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Parity</subject><subject>Phonons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Resonators</subject><subject>Superconductivity</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA62pOmrTpUgZvMKALZx3S9mTMYNuZJBX69kYrunN1fg7_BT5CLoFdA8vVTRAgizJjnGcMZAUZPyILKIXMuFBw_KvL_JSchbBjTPAC8gXZvBjv4kQ7NGH02GEfqetpfEMaoh_6LW1d2KMP7gOpx63rkA6WNs43o4v0MJo-jh01zTCGOLRTbzrXhHNyYs17wIufuySb-7vX1WO2fn54Wt2usyaHKmaqwrooGANV1aoWlQSRlwoFR27aikMprbTM1m0JwGtpatOgNenPC26TzJfkau7d--EwYoh6N4y-T5OaF0qVqkiNycVnV-OHEDxavfeuM37SwPQXPj3j0wmf_saneQrlcygkc79F_1f9T-oTAVx0LQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>von Lüpke, Uwe</creator><creator>Yang, Yu</creator><creator>Bild, Marius</creator><creator>Michaud, Laurent</creator><creator>Fadel, Matteo</creator><creator>Chu, Yiwen</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3653-0030</orcidid><orcidid>https://orcid.org/0000-0001-7067-4236</orcidid></search><sort><creationdate>20220701</creationdate><title>Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics</title><author>von Lüpke, Uwe ; Yang, Yu ; Bild, Marius ; Michaud, Laurent ; Fadel, Matteo ; Chu, Yiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-89eb6600189b8b49514378e42e2ad92175f5f0fbd7112b5abacefa217262fcef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/483/1139</topic><topic>639/766/483/2802</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Atomic</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dispersion</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Fock state</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical systems</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Parity</topic><topic>Phonons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Resonators</topic><topic>Superconductivity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Lüpke, Uwe</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Bild, Marius</creatorcontrib><creatorcontrib>Michaud, Laurent</creatorcontrib><creatorcontrib>Fadel, Matteo</creatorcontrib><creatorcontrib>Chu, Yiwen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Lüpke, Uwe</au><au>Yang, Yu</au><au>Bild, Marius</au><au>Michaud, Laurent</au><au>Fadel, Matteo</au><au>Chu, Yiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>794</spage><epage>799</epage><pages>794-799</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Mechanical resonators are emerging as an important new platform for quantum science and technologies. A large number of proposals for using them to store, process and transduce quantum information motivates the development of increasingly sophisticated techniques for controlling mechanical motion in the quantum regime. By interfacing mechanical resonators with superconducting circuits, circuit quantum acoustodynamics can make a variety of important tools available for manipulating and measuring motional quantum states. Here we demonstrate the direct measurements of phonon number distribution and parity of non-classical mechanical states. We do this by operating our system in the strong dispersive regime, where a superconducting qubit can be used to spectroscopically resolve the phonon Fock states. These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors. Furthermore, our results open the door for performing even more complex quantum algorithms using mechanical systems, such as quantum error correction and multimode operations.
Mechanical resonators combined with superconducting circuits are a promising platform for controlling non-classical mechanical states. Here this platform is used to directly measure the parity of a motional quantum state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01591-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3653-0030</orcidid><orcidid>https://orcid.org/0000-0001-7067-4236</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2022-07, Vol.18 (7), p.794-799 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2688786143 |
source | Springer Journals; Nature |
subjects | 639/766/483/1139 639/766/483/2802 Acoustics Algorithms Atomic Circuits Classical and Continuum Physics Complex Systems Condensed Matter Physics Dispersion Error correction Error correction & detection Fock state Mathematical and Computational Physics Mechanical systems Molecular Optical and Plasma Physics Parity Phonons Physics Physics and Astronomy Quantum phenomena Qubits (quantum computing) Resonators Superconductivity Theoretical |
title | Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parity%20measurement%20in%20the%20strong%20dispersive%20regime%20of%20circuit%20quantum%20acoustodynamics&rft.jtitle=Nature%20physics&rft.au=von%20L%C3%BCpke,%20Uwe&rft.date=2022-07-01&rft.volume=18&rft.issue=7&rft.spage=794&rft.epage=799&rft.pages=794-799&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01591-2&rft_dat=%3Cproquest_cross%3E2688786143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688786143&rft_id=info:pmid/&rfr_iscdi=true |