High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits

The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-07, Vol.18 (7), p.783-788
Hauptverfasser: Kim, Yosep, Morvan, Alexis, Nguyen, Long B., Naik, Ravi K., Jünger, Christian, Chen, Larry, Kreikebaum, John Mark, Santiago, David I., Siddiqi, Irfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 7
container_start_page 783
container_title Nature physics
container_volume 18
creator Kim, Yosep
Morvan, Alexis
Nguyen, Long B.
Naik, Ravi K.
Jünger, Christian
Chen, Larry
Kreikebaum, John Mark
Santiago, David I.
Siddiqi, Irfan
description The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity i Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The i Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and i Toffoli gates. Our work not only brings a high-fidelity i Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions. The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit i Toffoli gate has now been demonstrated using superconducting qubits.
doi_str_mv 10.1038/s41567-022-01590-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688782807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688782807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZr2ZzlKJWKAhSz0uymU231Gy7m4D996aN6M3TzOF93hkeQm4Z3DMQ-iFJpmY5Bc4pMFUAFWdkwnKpKJeanf_uubgkVyltACSfMTEh7wvfrKnzNW59d8i6dUSk-77yXeZXwbmw9VlTdpi5EDPnv7CmLuK-x9YestTvMNrQ1r3tfNtkJy5dkwtXbhPe_Mwp-Xh-Ws0XdPn28jp_XFIrtOpoLS1wK8BqXoIEC8pKnes6B6bRWlWgLCoNhSgrBY4j57lWrnQVMlsr58SU3I29uxiGh1JnNqGP7XDS8JkeqriGfEjxMWVjSCmiM7voP8t4MAzM0Z0Z3ZnBnTm5M2KAxAilIdw2GP-q_6G-ARXccts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688782807</pqid></control><display><type>article</type><title>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Yosep ; Morvan, Alexis ; Nguyen, Long B. ; Naik, Ravi K. ; Jünger, Christian ; Chen, Larry ; Kreikebaum, John Mark ; Santiago, David I. ; Siddiqi, Irfan</creator><creatorcontrib>Kim, Yosep ; Morvan, Alexis ; Nguyen, Long B. ; Naik, Ravi K. ; Jünger, Christian ; Chen, Larry ; Kreikebaum, John Mark ; Santiago, David I. ; Siddiqi, Irfan</creatorcontrib><description>The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity i Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The i Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and i Toffoli gates. Our work not only brings a high-fidelity i Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions. The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit i Toffoli gate has now been demonstrated using superconducting qubits.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01590-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Accuracy ; Algorithms ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Error correction ; Gates ; Gates (circuits) ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Superconductivity ; Synthesis ; Theoretical</subject><ispartof>Nature physics, 2022-07, Vol.18 (7), p.783-788</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</citedby><cites>FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</cites><orcidid>0000-0001-8770-1763 ; 0000-0003-2337-7321 ; 0000-0002-6332-1050 ; 0000-0003-4909-0652 ; 0000-0002-0253-4183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01590-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01590-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Yosep</creatorcontrib><creatorcontrib>Morvan, Alexis</creatorcontrib><creatorcontrib>Nguyen, Long B.</creatorcontrib><creatorcontrib>Naik, Ravi K.</creatorcontrib><creatorcontrib>Jünger, Christian</creatorcontrib><creatorcontrib>Chen, Larry</creatorcontrib><creatorcontrib>Kreikebaum, John Mark</creatorcontrib><creatorcontrib>Santiago, David I.</creatorcontrib><creatorcontrib>Siddiqi, Irfan</creatorcontrib><title>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity i Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The i Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and i Toffoli gates. Our work not only brings a high-fidelity i Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions. The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit i Toffoli gate has now been demonstrated using superconducting qubits.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Error correction</subject><subject>Gates</subject><subject>Gates (circuits)</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Superconductivity</subject><subject>Synthesis</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZr2ZzlKJWKAhSz0uymU231Gy7m4D996aN6M3TzOF93hkeQm4Z3DMQ-iFJpmY5Bc4pMFUAFWdkwnKpKJeanf_uubgkVyltACSfMTEh7wvfrKnzNW59d8i6dUSk-77yXeZXwbmw9VlTdpi5EDPnv7CmLuK-x9YestTvMNrQ1r3tfNtkJy5dkwtXbhPe_Mwp-Xh-Ws0XdPn28jp_XFIrtOpoLS1wK8BqXoIEC8pKnes6B6bRWlWgLCoNhSgrBY4j57lWrnQVMlsr58SU3I29uxiGh1JnNqGP7XDS8JkeqriGfEjxMWVjSCmiM7voP8t4MAzM0Z0Z3ZnBnTm5M2KAxAilIdw2GP-q_6G-ARXccts</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Kim, Yosep</creator><creator>Morvan, Alexis</creator><creator>Nguyen, Long B.</creator><creator>Naik, Ravi K.</creator><creator>Jünger, Christian</creator><creator>Chen, Larry</creator><creator>Kreikebaum, John Mark</creator><creator>Santiago, David I.</creator><creator>Siddiqi, Irfan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8770-1763</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0002-6332-1050</orcidid><orcidid>https://orcid.org/0000-0003-4909-0652</orcidid><orcidid>https://orcid.org/0000-0002-0253-4183</orcidid></search><sort><creationdate>20220701</creationdate><title>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</title><author>Kim, Yosep ; Morvan, Alexis ; Nguyen, Long B. ; Naik, Ravi K. ; Jünger, Christian ; Chen, Larry ; Kreikebaum, John Mark ; Santiago, David I. ; Siddiqi, Irfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Error correction</topic><topic>Gates</topic><topic>Gates (circuits)</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Superconductivity</topic><topic>Synthesis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yosep</creatorcontrib><creatorcontrib>Morvan, Alexis</creatorcontrib><creatorcontrib>Nguyen, Long B.</creatorcontrib><creatorcontrib>Naik, Ravi K.</creatorcontrib><creatorcontrib>Jünger, Christian</creatorcontrib><creatorcontrib>Chen, Larry</creatorcontrib><creatorcontrib>Kreikebaum, John Mark</creatorcontrib><creatorcontrib>Santiago, David I.</creatorcontrib><creatorcontrib>Siddiqi, Irfan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yosep</au><au>Morvan, Alexis</au><au>Nguyen, Long B.</au><au>Naik, Ravi K.</au><au>Jünger, Christian</au><au>Chen, Larry</au><au>Kreikebaum, John Mark</au><au>Santiago, David I.</au><au>Siddiqi, Irfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>783</spage><epage>788</epage><pages>783-788</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity i Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The i Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and i Toffoli gates. Our work not only brings a high-fidelity i Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions. The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit i Toffoli gate has now been demonstrated using superconducting qubits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01590-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8770-1763</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0002-6332-1050</orcidid><orcidid>https://orcid.org/0000-0003-4909-0652</orcidid><orcidid>https://orcid.org/0000-0002-0253-4183</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2022-07, Vol.18 (7), p.783-788
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2688782807
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/766/483/2802
639/766/483/481
Accuracy
Algorithms
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Error correction
Gates
Gates (circuits)
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum computers
Quantum computing
Qubits (quantum computing)
Superconductivity
Synthesis
Theoretical
title High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fidelity%20three-qubit%20iToffoli%20gate%20for%20fixed-frequency%20superconducting%20qubits&rft.jtitle=Nature%20physics&rft.au=Kim,%20Yosep&rft.date=2022-07-01&rft.volume=18&rft.issue=7&rft.spage=783&rft.epage=788&rft.pages=783-788&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01590-3&rft_dat=%3Cproquest_cross%3E2688782807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688782807&rft_id=info:pmid/&rfr_iscdi=true