High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits
The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error...
Gespeichert in:
Veröffentlicht in: | Nature physics 2022-07, Vol.18 (7), p.783-788 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 788 |
---|---|
container_issue | 7 |
container_start_page | 783 |
container_title | Nature physics |
container_volume | 18 |
creator | Kim, Yosep Morvan, Alexis Nguyen, Long B. Naik, Ravi K. Jünger, Christian Chen, Larry Kreikebaum, John Mark Santiago, David I. Siddiqi, Irfan |
description | The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity
i
Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The
i
Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and
i
Toffoli gates. Our work not only brings a high-fidelity
i
Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.
The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit
i
Toffoli gate has now been demonstrated using superconducting qubits. |
doi_str_mv | 10.1038/s41567-022-01590-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688782807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688782807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZr2ZzlKJWKAhSz0uymU231Gy7m4D996aN6M3TzOF93hkeQm4Z3DMQ-iFJpmY5Bc4pMFUAFWdkwnKpKJeanf_uubgkVyltACSfMTEh7wvfrKnzNW59d8i6dUSk-77yXeZXwbmw9VlTdpi5EDPnv7CmLuK-x9YestTvMNrQ1r3tfNtkJy5dkwtXbhPe_Mwp-Xh-Ws0XdPn28jp_XFIrtOpoLS1wK8BqXoIEC8pKnes6B6bRWlWgLCoNhSgrBY4j57lWrnQVMlsr58SU3I29uxiGh1JnNqGP7XDS8JkeqriGfEjxMWVjSCmiM7voP8t4MAzM0Z0Z3ZnBnTm5M2KAxAilIdw2GP-q_6G-ARXccts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688782807</pqid></control><display><type>article</type><title>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Yosep ; Morvan, Alexis ; Nguyen, Long B. ; Naik, Ravi K. ; Jünger, Christian ; Chen, Larry ; Kreikebaum, John Mark ; Santiago, David I. ; Siddiqi, Irfan</creator><creatorcontrib>Kim, Yosep ; Morvan, Alexis ; Nguyen, Long B. ; Naik, Ravi K. ; Jünger, Christian ; Chen, Larry ; Kreikebaum, John Mark ; Santiago, David I. ; Siddiqi, Irfan</creatorcontrib><description>The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity
i
Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The
i
Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and
i
Toffoli gates. Our work not only brings a high-fidelity
i
Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.
The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit
i
Toffoli gate has now been demonstrated using superconducting qubits.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01590-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Accuracy ; Algorithms ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Error correction ; Gates ; Gates (circuits) ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Superconductivity ; Synthesis ; Theoretical</subject><ispartof>Nature physics, 2022-07, Vol.18 (7), p.783-788</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</citedby><cites>FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</cites><orcidid>0000-0001-8770-1763 ; 0000-0003-2337-7321 ; 0000-0002-6332-1050 ; 0000-0003-4909-0652 ; 0000-0002-0253-4183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01590-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01590-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Yosep</creatorcontrib><creatorcontrib>Morvan, Alexis</creatorcontrib><creatorcontrib>Nguyen, Long B.</creatorcontrib><creatorcontrib>Naik, Ravi K.</creatorcontrib><creatorcontrib>Jünger, Christian</creatorcontrib><creatorcontrib>Chen, Larry</creatorcontrib><creatorcontrib>Kreikebaum, John Mark</creatorcontrib><creatorcontrib>Santiago, David I.</creatorcontrib><creatorcontrib>Siddiqi, Irfan</creatorcontrib><title>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity
i
Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The
i
Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and
i
Toffoli gates. Our work not only brings a high-fidelity
i
Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.
The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit
i
Toffoli gate has now been demonstrated using superconducting qubits.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Error correction</subject><subject>Gates</subject><subject>Gates (circuits)</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Superconductivity</subject><subject>Synthesis</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZr2ZzlKJWKAhSz0uymU231Gy7m4D996aN6M3TzOF93hkeQm4Z3DMQ-iFJpmY5Bc4pMFUAFWdkwnKpKJeanf_uubgkVyltACSfMTEh7wvfrKnzNW59d8i6dUSk-77yXeZXwbmw9VlTdpi5EDPnv7CmLuK-x9YestTvMNrQ1r3tfNtkJy5dkwtXbhPe_Mwp-Xh-Ws0XdPn28jp_XFIrtOpoLS1wK8BqXoIEC8pKnes6B6bRWlWgLCoNhSgrBY4j57lWrnQVMlsr58SU3I29uxiGh1JnNqGP7XDS8JkeqriGfEjxMWVjSCmiM7voP8t4MAzM0Z0Z3ZnBnTm5M2KAxAilIdw2GP-q_6G-ARXccts</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Kim, Yosep</creator><creator>Morvan, Alexis</creator><creator>Nguyen, Long B.</creator><creator>Naik, Ravi K.</creator><creator>Jünger, Christian</creator><creator>Chen, Larry</creator><creator>Kreikebaum, John Mark</creator><creator>Santiago, David I.</creator><creator>Siddiqi, Irfan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8770-1763</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0002-6332-1050</orcidid><orcidid>https://orcid.org/0000-0003-4909-0652</orcidid><orcidid>https://orcid.org/0000-0002-0253-4183</orcidid></search><sort><creationdate>20220701</creationdate><title>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</title><author>Kim, Yosep ; Morvan, Alexis ; Nguyen, Long B. ; Naik, Ravi K. ; Jünger, Christian ; Chen, Larry ; Kreikebaum, John Mark ; Santiago, David I. ; Siddiqi, Irfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d4c02c30c82a040c05c4878d7018ecc59e49b8093ab50f2e22785fafbe1cd5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Error correction</topic><topic>Gates</topic><topic>Gates (circuits)</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Superconductivity</topic><topic>Synthesis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yosep</creatorcontrib><creatorcontrib>Morvan, Alexis</creatorcontrib><creatorcontrib>Nguyen, Long B.</creatorcontrib><creatorcontrib>Naik, Ravi K.</creatorcontrib><creatorcontrib>Jünger, Christian</creatorcontrib><creatorcontrib>Chen, Larry</creatorcontrib><creatorcontrib>Kreikebaum, John Mark</creatorcontrib><creatorcontrib>Santiago, David I.</creatorcontrib><creatorcontrib>Siddiqi, Irfan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yosep</au><au>Morvan, Alexis</au><au>Nguyen, Long B.</au><au>Naik, Ravi K.</au><au>Jünger, Christian</au><au>Chen, Larry</au><au>Kreikebaum, John Mark</au><au>Santiago, David I.</au><au>Siddiqi, Irfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>18</volume><issue>7</issue><spage>783</spage><epage>788</epage><pages>783-788</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The development of noisy intermediate-scale quantum devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping these devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited owing to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity
i
Toffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The
i
Toffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates that provide more efficient gate synthesis than the Toffoli and
i
Toffoli gates. Our work not only brings a high-fidelity
i
Toffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.
The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit
i
Toffoli gate has now been demonstrated using superconducting qubits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01590-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8770-1763</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0002-6332-1050</orcidid><orcidid>https://orcid.org/0000-0003-4909-0652</orcidid><orcidid>https://orcid.org/0000-0002-0253-4183</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2022-07, Vol.18 (7), p.783-788 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2688782807 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/766/483/2802 639/766/483/481 Accuracy Algorithms Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Error correction Gates Gates (circuits) Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Quantum computers Quantum computing Qubits (quantum computing) Superconductivity Synthesis Theoretical |
title | High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fidelity%20three-qubit%20iToffoli%20gate%20for%20fixed-frequency%20superconducting%20qubits&rft.jtitle=Nature%20physics&rft.au=Kim,%20Yosep&rft.date=2022-07-01&rft.volume=18&rft.issue=7&rft.spage=783&rft.epage=788&rft.pages=783-788&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01590-3&rft_dat=%3Cproquest_cross%3E2688782807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688782807&rft_id=info:pmid/&rfr_iscdi=true |