Controllable Shadow Generation Using Pixel Height Maps
Shadows are essential for realistic image compositing. Physics-based shadow rendering methods require 3D geometries, which are not always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object's shadow without explicitly modeling the shad...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-07 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sheng, Yichen Liu, Yifan Zhang, Jianming Yin, Wei A Cengiz Oztireli Zhang, He Lin, Zhe Shechtman, Eli Benes, Bedrich |
description | Shadows are essential for realistic image compositing. Physics-based shadow rendering methods require 3D geometries, which are not always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object's shadow without explicitly modeling the shadow geometry. Still, they lack control and are prone to visual artifacts. We introduce pixel heigh, a novel geometry representation that encodes the correlations between objects, ground, and camera pose. The pixel height can be calculated from 3D geometries, manually annotated on 2D images, and can also be predicted from a single-view RGB image by a supervised approach. It can be used to calculate hard shadows in a 2D image based on the projective geometry, providing precise control of the shadows' direction and shape. Furthermore, we propose a data-driven soft shadow generator to apply softness to a hard shadow based on a softness input parameter. Qualitative and quantitative evaluations demonstrate that the proposed pixel height significantly improves the quality of the shadow generation while allowing for controllability. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2688767333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688767333</sourcerecordid><originalsourceid>FETCH-proquest_journals_26887673333</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc87PKynKz8lJTMpJVQjOSEzJL1dwT81LLUosyczPUwgtzsxLVwjIrEjNUfBIzUzPKFHwTSwo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzCwtzM3NjICBOFQC6rTUq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688767333</pqid></control><display><type>article</type><title>Controllable Shadow Generation Using Pixel Height Maps</title><source>Free E- Journals</source><creator>Sheng, Yichen ; Liu, Yifan ; Zhang, Jianming ; Yin, Wei ; A Cengiz Oztireli ; Zhang, He ; Lin, Zhe ; Shechtman, Eli ; Benes, Bedrich</creator><creatorcontrib>Sheng, Yichen ; Liu, Yifan ; Zhang, Jianming ; Yin, Wei ; A Cengiz Oztireli ; Zhang, He ; Lin, Zhe ; Shechtman, Eli ; Benes, Bedrich</creatorcontrib><description>Shadows are essential for realistic image compositing. Physics-based shadow rendering methods require 3D geometries, which are not always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object's shadow without explicitly modeling the shadow geometry. Still, they lack control and are prone to visual artifacts. We introduce pixel heigh, a novel geometry representation that encodes the correlations between objects, ground, and camera pose. The pixel height can be calculated from 3D geometries, manually annotated on 2D images, and can also be predicted from a single-view RGB image by a supervised approach. It can be used to calculate hard shadows in a 2D image based on the projective geometry, providing precise control of the shadows' direction and shape. Furthermore, we propose a data-driven soft shadow generator to apply softness to a hard shadow based on a softness input parameter. Qualitative and quantitative evaluations demonstrate that the proposed pixel height significantly improves the quality of the shadow generation while allowing for controllability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Controllability ; Geometry ; Pixels ; Projective geometry ; Shadows ; Softness</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sheng, Yichen</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Zhang, Jianming</creatorcontrib><creatorcontrib>Yin, Wei</creatorcontrib><creatorcontrib>A Cengiz Oztireli</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Shechtman, Eli</creatorcontrib><creatorcontrib>Benes, Bedrich</creatorcontrib><title>Controllable Shadow Generation Using Pixel Height Maps</title><title>arXiv.org</title><description>Shadows are essential for realistic image compositing. Physics-based shadow rendering methods require 3D geometries, which are not always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object's shadow without explicitly modeling the shadow geometry. Still, they lack control and are prone to visual artifacts. We introduce pixel heigh, a novel geometry representation that encodes the correlations between objects, ground, and camera pose. The pixel height can be calculated from 3D geometries, manually annotated on 2D images, and can also be predicted from a single-view RGB image by a supervised approach. It can be used to calculate hard shadows in a 2D image based on the projective geometry, providing precise control of the shadows' direction and shape. Furthermore, we propose a data-driven soft shadow generator to apply softness to a hard shadow based on a softness input parameter. Qualitative and quantitative evaluations demonstrate that the proposed pixel height significantly improves the quality of the shadow generation while allowing for controllability.</description><subject>Controllability</subject><subject>Geometry</subject><subject>Pixels</subject><subject>Projective geometry</subject><subject>Shadows</subject><subject>Softness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc87PKynKz8lJTMpJVQjOSEzJL1dwT81LLUosyczPUwgtzsxLVwjIrEjNUfBIzUzPKFHwTSwo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzCwtzM3NjICBOFQC6rTUq</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Sheng, Yichen</creator><creator>Liu, Yifan</creator><creator>Zhang, Jianming</creator><creator>Yin, Wei</creator><creator>A Cengiz Oztireli</creator><creator>Zhang, He</creator><creator>Lin, Zhe</creator><creator>Shechtman, Eli</creator><creator>Benes, Bedrich</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220715</creationdate><title>Controllable Shadow Generation Using Pixel Height Maps</title><author>Sheng, Yichen ; Liu, Yifan ; Zhang, Jianming ; Yin, Wei ; A Cengiz Oztireli ; Zhang, He ; Lin, Zhe ; Shechtman, Eli ; Benes, Bedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26887673333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Controllability</topic><topic>Geometry</topic><topic>Pixels</topic><topic>Projective geometry</topic><topic>Shadows</topic><topic>Softness</topic><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Yichen</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Zhang, Jianming</creatorcontrib><creatorcontrib>Yin, Wei</creatorcontrib><creatorcontrib>A Cengiz Oztireli</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Shechtman, Eli</creatorcontrib><creatorcontrib>Benes, Bedrich</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Yichen</au><au>Liu, Yifan</au><au>Zhang, Jianming</au><au>Yin, Wei</au><au>A Cengiz Oztireli</au><au>Zhang, He</au><au>Lin, Zhe</au><au>Shechtman, Eli</au><au>Benes, Bedrich</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Controllable Shadow Generation Using Pixel Height Maps</atitle><jtitle>arXiv.org</jtitle><date>2022-07-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Shadows are essential for realistic image compositing. Physics-based shadow rendering methods require 3D geometries, which are not always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object's shadow without explicitly modeling the shadow geometry. Still, they lack control and are prone to visual artifacts. We introduce pixel heigh, a novel geometry representation that encodes the correlations between objects, ground, and camera pose. The pixel height can be calculated from 3D geometries, manually annotated on 2D images, and can also be predicted from a single-view RGB image by a supervised approach. It can be used to calculate hard shadows in a 2D image based on the projective geometry, providing precise control of the shadows' direction and shape. Furthermore, we propose a data-driven soft shadow generator to apply softness to a hard shadow based on a softness input parameter. Qualitative and quantitative evaluations demonstrate that the proposed pixel height significantly improves the quality of the shadow generation while allowing for controllability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2688767333 |
source | Free E- Journals |
subjects | Controllability Geometry Pixels Projective geometry Shadows Softness |
title | Controllable Shadow Generation Using Pixel Height Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Controllable%20Shadow%20Generation%20Using%20Pixel%20Height%20Maps&rft.jtitle=arXiv.org&rft.au=Sheng,%20Yichen&rft.date=2022-07-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2688767333%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688767333&rft_id=info:pmid/&rfr_iscdi=true |