Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction
In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL pre...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-10, Vol.18 (10), p.7230-7239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7239 |
---|---|
container_issue | 10 |
container_start_page | 7230 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Xiang, Sheng Qin, Yi Luo, Jun Pu, Huayan |
description | In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods. |
doi_str_mv | 10.1109/TII.2021.3121326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2688711241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9580674</ieee_id><sourcerecordid>2688711241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhiMEEqWwI7FYYk65sxM7GVH5qlQ-BO0cpckZGdIktR0hZv44joqY7obnfe70RtE5wgwR8qvVYjHjwHEmkKPg8iCaYJ5gDJDCYdjTFGPBQRxHJ859AAgFIp9EP2996U3nadt3tmyab_Y4NN7URmuy1HpTNuzFdhU5Z9p3dkPUsycaAhqG_-rsJyvbmhnv2HXfN6YabS3zHbvdDabfBgV7pW1p2jG-dqSHhi2NpmCl2lQjfRod6bJxdPY3p9H67nY1f4iXz_eL-fUyrniOPq7LzSZ8pRJUWmYoFdRcY0VSEJAEXStdcQCteLLJlVYylVzkkkslOSR5JqbR5d7b2243kPPFRzfYNpwsuMwyhcgTDBTsqcp2zlnSRW_NtrTfBUIxVl2Eqoux6uKv6hC52EcMEf3jeZqBVIn4Bf5ufBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688711241</pqid></control><display><type>article</type><title>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Sheng ; Qin, Yi ; Luo, Jun ; Pu, Huayan</creator><creatorcontrib>Xiang, Sheng ; Qin, Yi ; Luo, Jun ; Pu, Huayan</creatorcontrib><description>In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3121326</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aeroengine ; Artificial neural networks ; Convolutional neural networks ; Datasets ; deep learning (DL) ; Degradation ; Feature extraction ; Gearboxes ; Life prediction ; Long short term memory ; Modular systems ; multidifferential processing ; Neural networks ; Prediction models ; Predictive models ; Propulsion systems ; remaining useful life (RUL) prediction ; spatio-temporal information ; Spatiotemporal phenomena ; Useful life ; Wind turbines</subject><ispartof>IEEE transactions on industrial informatics, 2022-10, Vol.18 (10), p.7230-7239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</citedby><cites>FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</cites><orcidid>0000-0002-5183-7076 ; 0000-0001-9830-3955 ; 0000-0002-2160-4300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9580674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9580674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang, Sheng</creatorcontrib><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><title>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods.</description><subject>Aeroengine</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep learning (DL)</subject><subject>Degradation</subject><subject>Feature extraction</subject><subject>Gearboxes</subject><subject>Life prediction</subject><subject>Long short term memory</subject><subject>Modular systems</subject><subject>multidifferential processing</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Propulsion systems</subject><subject>remaining useful life (RUL) prediction</subject><subject>spatio-temporal information</subject><subject>Spatiotemporal phenomena</subject><subject>Useful life</subject><subject>Wind turbines</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhiMEEqWwI7FYYk65sxM7GVH5qlQ-BO0cpckZGdIktR0hZv44joqY7obnfe70RtE5wgwR8qvVYjHjwHEmkKPg8iCaYJ5gDJDCYdjTFGPBQRxHJ859AAgFIp9EP2996U3nadt3tmyab_Y4NN7URmuy1HpTNuzFdhU5Z9p3dkPUsycaAhqG_-rsJyvbmhnv2HXfN6YabS3zHbvdDabfBgV7pW1p2jG-dqSHhi2NpmCl2lQjfRod6bJxdPY3p9H67nY1f4iXz_eL-fUyrniOPq7LzSZ8pRJUWmYoFdRcY0VSEJAEXStdcQCteLLJlVYylVzkkkslOSR5JqbR5d7b2243kPPFRzfYNpwsuMwyhcgTDBTsqcp2zlnSRW_NtrTfBUIxVl2Eqoux6uKv6hC52EcMEf3jeZqBVIn4Bf5ufBE</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xiang, Sheng</creator><creator>Qin, Yi</creator><creator>Luo, Jun</creator><creator>Pu, Huayan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5183-7076</orcidid><orcidid>https://orcid.org/0000-0001-9830-3955</orcidid><orcidid>https://orcid.org/0000-0002-2160-4300</orcidid></search><sort><creationdate>20221001</creationdate><title>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</title><author>Xiang, Sheng ; Qin, Yi ; Luo, Jun ; Pu, Huayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeroengine</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep learning (DL)</topic><topic>Degradation</topic><topic>Feature extraction</topic><topic>Gearboxes</topic><topic>Life prediction</topic><topic>Long short term memory</topic><topic>Modular systems</topic><topic>multidifferential processing</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Propulsion systems</topic><topic>remaining useful life (RUL) prediction</topic><topic>spatio-temporal information</topic><topic>Spatiotemporal phenomena</topic><topic>Useful life</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Sheng</creatorcontrib><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Sheng</au><au>Qin, Yi</au><au>Luo, Jun</au><au>Pu, Huayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>7230</spage><epage>7239</epage><pages>7230-7239</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3121326</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5183-7076</orcidid><orcidid>https://orcid.org/0000-0001-9830-3955</orcidid><orcidid>https://orcid.org/0000-0002-2160-4300</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-10, Vol.18 (10), p.7230-7239 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2688711241 |
source | IEEE Electronic Library (IEL) |
subjects | Aeroengine Artificial neural networks Convolutional neural networks Datasets deep learning (DL) Degradation Feature extraction Gearboxes Life prediction Long short term memory Modular systems multidifferential processing Neural networks Prediction models Predictive models Propulsion systems remaining useful life (RUL) prediction spatio-temporal information Spatiotemporal phenomena Useful life Wind turbines |
title | Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporally%20Multidifferential%20Processing%20Deep%20Neural%20Network%20and%20its%20Application%20to%20Equipment%20Remaining%20Useful%20Life%20Prediction&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Xiang,%20Sheng&rft.date=2022-10-01&rft.volume=18&rft.issue=10&rft.spage=7230&rft.epage=7239&rft.pages=7230-7239&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3121326&rft_dat=%3Cproquest_RIE%3E2688711241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688711241&rft_id=info:pmid/&rft_ieee_id=9580674&rfr_iscdi=true |