Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction

In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2022-10, Vol.18 (10), p.7230-7239
Hauptverfasser: Xiang, Sheng, Qin, Yi, Luo, Jun, Pu, Huayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7239
container_issue 10
container_start_page 7230
container_title IEEE transactions on industrial informatics
container_volume 18
creator Xiang, Sheng
Qin, Yi
Luo, Jun
Pu, Huayan
description In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods.
doi_str_mv 10.1109/TII.2021.3121326
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2688711241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9580674</ieee_id><sourcerecordid>2688711241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhiMEEqWwI7FYYk65sxM7GVH5qlQ-BO0cpckZGdIktR0hZv44joqY7obnfe70RtE5wgwR8qvVYjHjwHEmkKPg8iCaYJ5gDJDCYdjTFGPBQRxHJ859AAgFIp9EP2996U3nadt3tmyab_Y4NN7URmuy1HpTNuzFdhU5Z9p3dkPUsycaAhqG_-rsJyvbmhnv2HXfN6YabS3zHbvdDabfBgV7pW1p2jG-dqSHhi2NpmCl2lQjfRod6bJxdPY3p9H67nY1f4iXz_eL-fUyrniOPq7LzSZ8pRJUWmYoFdRcY0VSEJAEXStdcQCteLLJlVYylVzkkkslOSR5JqbR5d7b2243kPPFRzfYNpwsuMwyhcgTDBTsqcp2zlnSRW_NtrTfBUIxVl2Eqoux6uKv6hC52EcMEf3jeZqBVIn4Bf5ufBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688711241</pqid></control><display><type>article</type><title>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Xiang, Sheng ; Qin, Yi ; Luo, Jun ; Pu, Huayan</creator><creatorcontrib>Xiang, Sheng ; Qin, Yi ; Luo, Jun ; Pu, Huayan</creatorcontrib><description>In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3121326</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aeroengine ; Artificial neural networks ; Convolutional neural networks ; Datasets ; deep learning (DL) ; Degradation ; Feature extraction ; Gearboxes ; Life prediction ; Long short term memory ; Modular systems ; multidifferential processing ; Neural networks ; Prediction models ; Predictive models ; Propulsion systems ; remaining useful life (RUL) prediction ; spatio-temporal information ; Spatiotemporal phenomena ; Useful life ; Wind turbines</subject><ispartof>IEEE transactions on industrial informatics, 2022-10, Vol.18 (10), p.7230-7239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</citedby><cites>FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</cites><orcidid>0000-0002-5183-7076 ; 0000-0001-9830-3955 ; 0000-0002-2160-4300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9580674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9580674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang, Sheng</creatorcontrib><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><title>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods.</description><subject>Aeroengine</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep learning (DL)</subject><subject>Degradation</subject><subject>Feature extraction</subject><subject>Gearboxes</subject><subject>Life prediction</subject><subject>Long short term memory</subject><subject>Modular systems</subject><subject>multidifferential processing</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Propulsion systems</subject><subject>remaining useful life (RUL) prediction</subject><subject>spatio-temporal information</subject><subject>Spatiotemporal phenomena</subject><subject>Useful life</subject><subject>Wind turbines</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhiMEEqWwI7FYYk65sxM7GVH5qlQ-BO0cpckZGdIktR0hZv44joqY7obnfe70RtE5wgwR8qvVYjHjwHEmkKPg8iCaYJ5gDJDCYdjTFGPBQRxHJ859AAgFIp9EP2996U3nadt3tmyab_Y4NN7URmuy1HpTNuzFdhU5Z9p3dkPUsycaAhqG_-rsJyvbmhnv2HXfN6YabS3zHbvdDabfBgV7pW1p2jG-dqSHhi2NpmCl2lQjfRod6bJxdPY3p9H67nY1f4iXz_eL-fUyrniOPq7LzSZ8pRJUWmYoFdRcY0VSEJAEXStdcQCteLLJlVYylVzkkkslOSR5JqbR5d7b2243kPPFRzfYNpwsuMwyhcgTDBTsqcp2zlnSRW_NtrTfBUIxVl2Eqoux6uKv6hC52EcMEf3jeZqBVIn4Bf5ufBE</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xiang, Sheng</creator><creator>Qin, Yi</creator><creator>Luo, Jun</creator><creator>Pu, Huayan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5183-7076</orcidid><orcidid>https://orcid.org/0000-0001-9830-3955</orcidid><orcidid>https://orcid.org/0000-0002-2160-4300</orcidid></search><sort><creationdate>20221001</creationdate><title>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</title><author>Xiang, Sheng ; Qin, Yi ; Luo, Jun ; Pu, Huayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-dabbffe7417f681670d2f1ce63e0e60fd7fc200f724b97f765623962676204983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeroengine</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep learning (DL)</topic><topic>Degradation</topic><topic>Feature extraction</topic><topic>Gearboxes</topic><topic>Life prediction</topic><topic>Long short term memory</topic><topic>Modular systems</topic><topic>multidifferential processing</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Propulsion systems</topic><topic>remaining useful life (RUL) prediction</topic><topic>spatio-temporal information</topic><topic>Spatiotemporal phenomena</topic><topic>Useful life</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Sheng</creatorcontrib><creatorcontrib>Qin, Yi</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Sheng</au><au>Qin, Yi</au><au>Luo, Jun</au><au>Pu, Huayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>7230</spage><epage>7239</epage><pages>7230-7239</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, facing the gaps that the traditional long short-term memory (LSTM) and convolution neural network (CNN) cannot differentially deal with the input data based on the corresponding trend and stage information in remaining useful life (RUL) prediction, a more accurate and robust RUL prediction model is constructed. First, a temporally multidifferential LSTM (TMLSTM) with the multitrend division unit and multicellular unit is proposed, and a spatially multidifferential CNN (SMCNN) with the multistage division unit and differentiated convolutions is designed. Then, by combining TMLSTM and SMCNN, a spatiotemporally multidifferential deep neural network is developed for predicting the equipment RUL, which enhances the ability of feature extraction from the spatiotemporal perspective by using the multitrend and multistage information. Via several evaluation indexes, the commercial modular aero propulsion system simulation dataset and the wind turbine gearbox bearing dataset are used to validate the superiority of the proposed method over several existing prediction methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3121326</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5183-7076</orcidid><orcidid>https://orcid.org/0000-0001-9830-3955</orcidid><orcidid>https://orcid.org/0000-0002-2160-4300</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2022-10, Vol.18 (10), p.7230-7239
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2688711241
source IEEE Electronic Library (IEL)
subjects Aeroengine
Artificial neural networks
Convolutional neural networks
Datasets
deep learning (DL)
Degradation
Feature extraction
Gearboxes
Life prediction
Long short term memory
Modular systems
multidifferential processing
Neural networks
Prediction models
Predictive models
Propulsion systems
remaining useful life (RUL) prediction
spatio-temporal information
Spatiotemporal phenomena
Useful life
Wind turbines
title Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporally%20Multidifferential%20Processing%20Deep%20Neural%20Network%20and%20its%20Application%20to%20Equipment%20Remaining%20Useful%20Life%20Prediction&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Xiang,%20Sheng&rft.date=2022-10-01&rft.volume=18&rft.issue=10&rft.spage=7230&rft.epage=7239&rft.pages=7230-7239&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3121326&rft_dat=%3Cproquest_RIE%3E2688711241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688711241&rft_id=info:pmid/&rft_ieee_id=9580674&rfr_iscdi=true