Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation

Effective management of urban traffic is important for any smart city initiative. Therefore, the quality of the sensory traffic data is of paramount importance. However, like any sensory data, urban traffic data are prone to imperfections leading to missing measurements. In this paper, we focus on i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.6836-6849
Hauptverfasser: Ben Said, Ahmed, Erradi, Abdelkarim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6849
container_issue 7
container_start_page 6836
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Ben Said, Ahmed
Erradi, Abdelkarim
description Effective management of urban traffic is important for any smart city initiative. Therefore, the quality of the sensory traffic data is of paramount importance. However, like any sensory data, urban traffic data are prone to imperfections leading to missing measurements. In this paper, we focus on inter-region traffic data completion. We model the inter-region traffic as a spatiotemporal tensor that suffers from missing measurements. To recover the missing data, we propose an enhanced CANDECOMP/PARAFAC (CP) completion approach that considers the urban and temporal aspects of the traffic. To derive the urban characteristics, we divide the area of study into regions. Then, for each region, we compute urban feature vectors inspired from biodiversity which are used to compute the urban similarity matrix. To mine the temporal aspect, we first conduct an entropy analysis to determine the most regular time-series. Then, we conduct a joint Fourier and correlation analysis to compute its periodicity and construct the temporal matrix. Both urban and temporal matrices are fed into a modified CP-completion objective function. To solve this objective, we propose an alternating least square approach that operates on the vectorized version of the inputs. We conduct comprehensive comparative study with two evaluation scenarios. In the first one, we simulate random missing values. In the second scenario, we simulate missing values at a given area and time duration. Our results demonstrate that our approach provides effective recovering performance reaching 26% improvement compared to state-of-art CP approaches and 35% compared to state-of-art generative model-based approaches.
doi_str_mv 10.1109/TITS.2021.3062999
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2688703604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9376705</ieee_id><sourcerecordid>2688703604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1cb1c5754ed0779a0e887d42a640a7707a99b11e6ec5f54ffd0e4fc0d77877a83</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWFpmk_oPRi6NnpStbDOpbQpIFAD3HOQrFX4BBbruQU-veVSehpd2dnZpch5JnCglLQb9Wm2i0YMLooQDKt9Q2ZUSHKHIDK26lnPNcg4J48xHhMKBeUzshqN9ix9SN2gw_2lFXYRx-ype-GE6ZFn7k0broh-B9ssn042D6rgnWurSf4PE7y_pHcOXuK-HStc7JffVTLz3z7td4s37d5zXQx5rQ-0FoowbEBpbQFLEvVcGYlB6sUKKv1gVKUWAsnuHMNIHc1NEqVStmymJPXi2_65_uMcTRHfw59OmmYTF5QSOCJRS-sOvgYAzozhLaz4ddQMFNcZorLTHGZa1xJ83LRtIj4z9eFkgpE8QfyXGZ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703604</pqid></control><display><type>article</type><title>Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation</title><source>IEEE Electronic Library (IEL)</source><creator>Ben Said, Ahmed ; Erradi, Abdelkarim</creator><creatorcontrib>Ben Said, Ahmed ; Erradi, Abdelkarim</creatorcontrib><description>Effective management of urban traffic is important for any smart city initiative. Therefore, the quality of the sensory traffic data is of paramount importance. However, like any sensory data, urban traffic data are prone to imperfections leading to missing measurements. In this paper, we focus on inter-region traffic data completion. We model the inter-region traffic as a spatiotemporal tensor that suffers from missing measurements. To recover the missing data, we propose an enhanced CANDECOMP/PARAFAC (CP) completion approach that considers the urban and temporal aspects of the traffic. To derive the urban characteristics, we divide the area of study into regions. Then, for each region, we compute urban feature vectors inspired from biodiversity which are used to compute the urban similarity matrix. To mine the temporal aspect, we first conduct an entropy analysis to determine the most regular time-series. Then, we conduct a joint Fourier and correlation analysis to compute its periodicity and construct the temporal matrix. Both urban and temporal matrices are fed into a modified CP-completion objective function. To solve this objective, we propose an alternating least square approach that operates on the vectorized version of the inputs. We conduct comprehensive comparative study with two evaluation scenarios. In the first one, we simulate random missing values. In the second scenario, we simulate missing values at a given area and time duration. Our results demonstrate that our approach provides effective recovering performance reaching 26% improvement compared to state-of-art CP approaches and 35% compared to state-of-art generative model-based approaches.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3062999</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biodiversity ; CANDECOMP/PARAFAC ; Comparative studies ; Correlation analysis ; Data models ; Forecasting ; Gallium nitride ; Mathematical analysis ; Meteorology ; Missing data ; Sparse matrices ; Spatiotemporal phenomena ; tensor completion ; Tensors ; Traffic information ; Traffic management ; Traffic models ; Traffic tensor</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.6836-6849</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1cb1c5754ed0779a0e887d42a640a7707a99b11e6ec5f54ffd0e4fc0d77877a83</citedby><cites>FETCH-LOGICAL-c293t-1cb1c5754ed0779a0e887d42a640a7707a99b11e6ec5f54ffd0e4fc0d77877a83</cites><orcidid>0000-0002-7760-8132 ; 0000-0002-8333-3454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9376705$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9376705$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ben Said, Ahmed</creatorcontrib><creatorcontrib>Erradi, Abdelkarim</creatorcontrib><title>Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Effective management of urban traffic is important for any smart city initiative. Therefore, the quality of the sensory traffic data is of paramount importance. However, like any sensory data, urban traffic data are prone to imperfections leading to missing measurements. In this paper, we focus on inter-region traffic data completion. We model the inter-region traffic as a spatiotemporal tensor that suffers from missing measurements. To recover the missing data, we propose an enhanced CANDECOMP/PARAFAC (CP) completion approach that considers the urban and temporal aspects of the traffic. To derive the urban characteristics, we divide the area of study into regions. Then, for each region, we compute urban feature vectors inspired from biodiversity which are used to compute the urban similarity matrix. To mine the temporal aspect, we first conduct an entropy analysis to determine the most regular time-series. Then, we conduct a joint Fourier and correlation analysis to compute its periodicity and construct the temporal matrix. Both urban and temporal matrices are fed into a modified CP-completion objective function. To solve this objective, we propose an alternating least square approach that operates on the vectorized version of the inputs. We conduct comprehensive comparative study with two evaluation scenarios. In the first one, we simulate random missing values. In the second scenario, we simulate missing values at a given area and time duration. Our results demonstrate that our approach provides effective recovering performance reaching 26% improvement compared to state-of-art CP approaches and 35% compared to state-of-art generative model-based approaches.</description><subject>Biodiversity</subject><subject>CANDECOMP/PARAFAC</subject><subject>Comparative studies</subject><subject>Correlation analysis</subject><subject>Data models</subject><subject>Forecasting</subject><subject>Gallium nitride</subject><subject>Mathematical analysis</subject><subject>Meteorology</subject><subject>Missing data</subject><subject>Sparse matrices</subject><subject>Spatiotemporal phenomena</subject><subject>tensor completion</subject><subject>Tensors</subject><subject>Traffic information</subject><subject>Traffic management</subject><subject>Traffic models</subject><subject>Traffic tensor</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtqwzAQFKWFpmk_oPRi6NnpStbDOpbQpIFAD3HOQrFX4BBbruQU-veVSehpd2dnZpch5JnCglLQb9Wm2i0YMLooQDKt9Q2ZUSHKHIDK26lnPNcg4J48xHhMKBeUzshqN9ix9SN2gw_2lFXYRx-ype-GE6ZFn7k0broh-B9ssn042D6rgnWurSf4PE7y_pHcOXuK-HStc7JffVTLz3z7td4s37d5zXQx5rQ-0FoowbEBpbQFLEvVcGYlB6sUKKv1gVKUWAsnuHMNIHc1NEqVStmymJPXi2_65_uMcTRHfw59OmmYTF5QSOCJRS-sOvgYAzozhLaz4ddQMFNcZorLTHGZa1xJ83LRtIj4z9eFkgpE8QfyXGZ1</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ben Said, Ahmed</creator><creator>Erradi, Abdelkarim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7760-8132</orcidid><orcidid>https://orcid.org/0000-0002-8333-3454</orcidid></search><sort><creationdate>20220701</creationdate><title>Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation</title><author>Ben Said, Ahmed ; Erradi, Abdelkarim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1cb1c5754ed0779a0e887d42a640a7707a99b11e6ec5f54ffd0e4fc0d77877a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biodiversity</topic><topic>CANDECOMP/PARAFAC</topic><topic>Comparative studies</topic><topic>Correlation analysis</topic><topic>Data models</topic><topic>Forecasting</topic><topic>Gallium nitride</topic><topic>Mathematical analysis</topic><topic>Meteorology</topic><topic>Missing data</topic><topic>Sparse matrices</topic><topic>Spatiotemporal phenomena</topic><topic>tensor completion</topic><topic>Tensors</topic><topic>Traffic information</topic><topic>Traffic management</topic><topic>Traffic models</topic><topic>Traffic tensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Said, Ahmed</creatorcontrib><creatorcontrib>Erradi, Abdelkarim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben Said, Ahmed</au><au>Erradi, Abdelkarim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>6836</spage><epage>6849</epage><pages>6836-6849</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Effective management of urban traffic is important for any smart city initiative. Therefore, the quality of the sensory traffic data is of paramount importance. However, like any sensory data, urban traffic data are prone to imperfections leading to missing measurements. In this paper, we focus on inter-region traffic data completion. We model the inter-region traffic as a spatiotemporal tensor that suffers from missing measurements. To recover the missing data, we propose an enhanced CANDECOMP/PARAFAC (CP) completion approach that considers the urban and temporal aspects of the traffic. To derive the urban characteristics, we divide the area of study into regions. Then, for each region, we compute urban feature vectors inspired from biodiversity which are used to compute the urban similarity matrix. To mine the temporal aspect, we first conduct an entropy analysis to determine the most regular time-series. Then, we conduct a joint Fourier and correlation analysis to compute its periodicity and construct the temporal matrix. Both urban and temporal matrices are fed into a modified CP-completion objective function. To solve this objective, we propose an alternating least square approach that operates on the vectorized version of the inputs. We conduct comprehensive comparative study with two evaluation scenarios. In the first one, we simulate random missing values. In the second scenario, we simulate missing values at a given area and time duration. Our results demonstrate that our approach provides effective recovering performance reaching 26% improvement compared to state-of-art CP approaches and 35% compared to state-of-art generative model-based approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3062999</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7760-8132</orcidid><orcidid>https://orcid.org/0000-0002-8333-3454</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.6836-6849
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2688703604
source IEEE Electronic Library (IEL)
subjects Biodiversity
CANDECOMP/PARAFAC
Comparative studies
Correlation analysis
Data models
Forecasting
Gallium nitride
Mathematical analysis
Meteorology
Missing data
Sparse matrices
Spatiotemporal phenomena
tensor completion
Tensors
Traffic information
Traffic management
Traffic models
Traffic tensor
title Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Tensor%20Completion%20for%20Improved%20Urban%20Traffic%20Imputation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ben%20Said,%20Ahmed&rft.date=2022-07-01&rft.volume=23&rft.issue=7&rft.spage=6836&rft.epage=6849&rft.pages=6836-6849&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3062999&rft_dat=%3Cproquest_RIE%3E2688703604%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688703604&rft_id=info:pmid/&rft_ieee_id=9376705&rfr_iscdi=true