Real-Time Perception-Limited Motion Planning Using Sampling-Based MPC

Motion planning with visual perception is a hot topic for autonomous flight of micro aerial vehicles (MAVs). However, many existing works fail to be implemented in realistic scenarios in real time due to practical constraints, such as the limited field of view (FOV) of the onboard camera and the lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-12, Vol.69 (12), p.13182-13191
Hauptverfasser: Lu, Hanchen, Zong, Qun, Lai, Shupeng, Tian, Bailing, Xie, Lihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13191
container_issue 12
container_start_page 13182
container_title IEEE transactions on industrial electronics (1982)
container_volume 69
creator Lu, Hanchen
Zong, Qun
Lai, Shupeng
Tian, Bailing
Xie, Lihua
description Motion planning with visual perception is a hot topic for autonomous flight of micro aerial vehicles (MAVs). However, many existing works fail to be implemented in realistic scenarios in real time due to practical constraints, such as the limited field of view (FOV) of the onboard camera and the limited computational capability. Compared to the existing methods, the proposed approach solves the optimization of motion and perception at the same time. A sampling-based model-predictive control framework is explored as a local planner to generate trajectories, which are dynamically feasible and collision-free with limited perception . The sampling-based local planning framework is extended to two independent scenarios for MAVs: 1) planning safe trajectories with limited FOV constraint and 2) planning trajectories with effective perception of the point of interest. The effectiveness of the proposed method is demonstrated through both simulation and real-flight experiments.
doi_str_mv 10.1109/TIE.2022.3140533
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2688701155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9677992</ieee_id><sourcerecordid>2688701155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f0f22ceccad84b75f9d56519d07a1a2762cb4c7469ac34e7b1ee4b7cd7043b683</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKt3wcuC59RJNo_NUUvVQsWi7Tlks7OSsi8368F_7y4tXuYB38wwHyG3DBaMgXnYrVcLDpwvUiZApukZmTEpNTVGZOdkBlxnFECoS3IV4wGACcnkjKw-0FV0F2pMtth77IbQNnQT6jBgkby1U5tsK9c0oflK9nGKn67uqrGgTy5O0HZ5TS5KV0W8OeU52T-vdstXunl_WS8fN9RzwwZaQsm5R-9dkYlcy9IUUklmCtCOOa4V97nwWijjfCpQ5wxx5HyhQaS5ytI5uT_u7fr2-wfjYA_tT9-MJy1XWaaBjT-PFBwp37cx9ljarg-1638tAzvJsqMsO8myJ1njyN1xJCDiP26U1sbw9A96QWRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688701155</pqid></control><display><type>article</type><title>Real-Time Perception-Limited Motion Planning Using Sampling-Based MPC</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Hanchen ; Zong, Qun ; Lai, Shupeng ; Tian, Bailing ; Xie, Lihua</creator><creatorcontrib>Lu, Hanchen ; Zong, Qun ; Lai, Shupeng ; Tian, Bailing ; Xie, Lihua</creatorcontrib><description>Motion planning with visual perception is a hot topic for autonomous flight of micro aerial vehicles (MAVs). However, many existing works fail to be implemented in realistic scenarios in real time due to practical constraints, such as the limited field of view (FOV) of the onboard camera and the limited computational capability. Compared to the existing methods, the proposed approach solves the optimization of motion and perception at the same time. A sampling-based model-predictive control framework is explored as a local planner to generate trajectories, which are dynamically feasible and collision-free with limited perception . The sampling-based local planning framework is extended to two independent scenarios for MAVs: 1) planning safe trajectories with limited FOV constraint and 2) planning trajectories with effective perception of the point of interest. The effectiveness of the proposed method is demonstrated through both simulation and real-flight experiments.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3140533</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerial systems: perception and autonomy ; Aerospace electronics ; Collision avoidance ; Collision dynamics ; Costs ; Field of view ; Micro air vehicles (MAV) ; motion and path planning ; Motion planning ; Optimal control ; Optimization ; optimization and optimal control ; Planning ; Predictive control ; Real time ; Sampling ; Sensors ; Stochastic processes ; Trajectory ; Trajectory planning ; vision-based navigation ; Visual flight ; Visual perception</subject><ispartof>IEEE transactions on industrial electronics (1982), 2022-12, Vol.69 (12), p.13182-13191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f0f22ceccad84b75f9d56519d07a1a2762cb4c7469ac34e7b1ee4b7cd7043b683</citedby><cites>FETCH-LOGICAL-c291t-f0f22ceccad84b75f9d56519d07a1a2762cb4c7469ac34e7b1ee4b7cd7043b683</cites><orcidid>0000-0003-1004-8350 ; 0000-0002-7137-4136 ; 0000-0003-2597-5392 ; 0000-0002-2941-2135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9677992$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9677992$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Hanchen</creatorcontrib><creatorcontrib>Zong, Qun</creatorcontrib><creatorcontrib>Lai, Shupeng</creatorcontrib><creatorcontrib>Tian, Bailing</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><title>Real-Time Perception-Limited Motion Planning Using Sampling-Based MPC</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Motion planning with visual perception is a hot topic for autonomous flight of micro aerial vehicles (MAVs). However, many existing works fail to be implemented in realistic scenarios in real time due to practical constraints, such as the limited field of view (FOV) of the onboard camera and the limited computational capability. Compared to the existing methods, the proposed approach solves the optimization of motion and perception at the same time. A sampling-based model-predictive control framework is explored as a local planner to generate trajectories, which are dynamically feasible and collision-free with limited perception . The sampling-based local planning framework is extended to two independent scenarios for MAVs: 1) planning safe trajectories with limited FOV constraint and 2) planning trajectories with effective perception of the point of interest. The effectiveness of the proposed method is demonstrated through both simulation and real-flight experiments.</description><subject>Aerial systems: perception and autonomy</subject><subject>Aerospace electronics</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Costs</subject><subject>Field of view</subject><subject>Micro air vehicles (MAV)</subject><subject>motion and path planning</subject><subject>Motion planning</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>Planning</subject><subject>Predictive control</subject><subject>Real time</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Stochastic processes</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>vision-based navigation</subject><subject>Visual flight</subject><subject>Visual perception</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQgIMoWKt3wcuC59RJNo_NUUvVQsWi7Tlks7OSsi8368F_7y4tXuYB38wwHyG3DBaMgXnYrVcLDpwvUiZApukZmTEpNTVGZOdkBlxnFECoS3IV4wGACcnkjKw-0FV0F2pMtth77IbQNnQT6jBgkby1U5tsK9c0oflK9nGKn67uqrGgTy5O0HZ5TS5KV0W8OeU52T-vdstXunl_WS8fN9RzwwZaQsm5R-9dkYlcy9IUUklmCtCOOa4V97nwWijjfCpQ5wxx5HyhQaS5ytI5uT_u7fr2-wfjYA_tT9-MJy1XWaaBjT-PFBwp37cx9ljarg-1638tAzvJsqMsO8myJ1njyN1xJCDiP26U1sbw9A96QWRc</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Lu, Hanchen</creator><creator>Zong, Qun</creator><creator>Lai, Shupeng</creator><creator>Tian, Bailing</creator><creator>Xie, Lihua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1004-8350</orcidid><orcidid>https://orcid.org/0000-0002-7137-4136</orcidid><orcidid>https://orcid.org/0000-0003-2597-5392</orcidid><orcidid>https://orcid.org/0000-0002-2941-2135</orcidid></search><sort><creationdate>20221201</creationdate><title>Real-Time Perception-Limited Motion Planning Using Sampling-Based MPC</title><author>Lu, Hanchen ; Zong, Qun ; Lai, Shupeng ; Tian, Bailing ; Xie, Lihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f0f22ceccad84b75f9d56519d07a1a2762cb4c7469ac34e7b1ee4b7cd7043b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerial systems: perception and autonomy</topic><topic>Aerospace electronics</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Costs</topic><topic>Field of view</topic><topic>Micro air vehicles (MAV)</topic><topic>motion and path planning</topic><topic>Motion planning</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>Planning</topic><topic>Predictive control</topic><topic>Real time</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Stochastic processes</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>vision-based navigation</topic><topic>Visual flight</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hanchen</creatorcontrib><creatorcontrib>Zong, Qun</creatorcontrib><creatorcontrib>Lai, Shupeng</creatorcontrib><creatorcontrib>Tian, Bailing</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Hanchen</au><au>Zong, Qun</au><au>Lai, Shupeng</au><au>Tian, Bailing</au><au>Xie, Lihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Perception-Limited Motion Planning Using Sampling-Based MPC</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>69</volume><issue>12</issue><spage>13182</spage><epage>13191</epage><pages>13182-13191</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Motion planning with visual perception is a hot topic for autonomous flight of micro aerial vehicles (MAVs). However, many existing works fail to be implemented in realistic scenarios in real time due to practical constraints, such as the limited field of view (FOV) of the onboard camera and the limited computational capability. Compared to the existing methods, the proposed approach solves the optimization of motion and perception at the same time. A sampling-based model-predictive control framework is explored as a local planner to generate trajectories, which are dynamically feasible and collision-free with limited perception . The sampling-based local planning framework is extended to two independent scenarios for MAVs: 1) planning safe trajectories with limited FOV constraint and 2) planning trajectories with effective perception of the point of interest. The effectiveness of the proposed method is demonstrated through both simulation and real-flight experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3140533</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1004-8350</orcidid><orcidid>https://orcid.org/0000-0002-7137-4136</orcidid><orcidid>https://orcid.org/0000-0003-2597-5392</orcidid><orcidid>https://orcid.org/0000-0002-2941-2135</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2022-12, Vol.69 (12), p.13182-13191
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2688701155
source IEEE Electronic Library (IEL)
subjects Aerial systems: perception and autonomy
Aerospace electronics
Collision avoidance
Collision dynamics
Costs
Field of view
Micro air vehicles (MAV)
motion and path planning
Motion planning
Optimal control
Optimization
optimization and optimal control
Planning
Predictive control
Real time
Sampling
Sensors
Stochastic processes
Trajectory
Trajectory planning
vision-based navigation
Visual flight
Visual perception
title Real-Time Perception-Limited Motion Planning Using Sampling-Based MPC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Perception-Limited%20Motion%20Planning%20Using%20Sampling-Based%20MPC&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Lu,%20Hanchen&rft.date=2022-12-01&rft.volume=69&rft.issue=12&rft.spage=13182&rft.epage=13191&rft.pages=13182-13191&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3140533&rft_dat=%3Cproquest_RIE%3E2688701155%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688701155&rft_id=info:pmid/&rft_ieee_id=9677992&rfr_iscdi=true