Multifeature Fusion Keyword Extraction Algorithm Based on TextRank

Keyword extraction is the predecessor of many tasks, and its results directly affect search, recommendation, classification, and other tasks. In this study, we take Chinese text as the research object and propose a multi-feature fusion keyword extraction algorithm combined with BERT semantics and K-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.71805-71813
Hauptverfasser: Guo, Wenming, Wang, Zihao, Han, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71813
container_issue
container_start_page 71805
container_title IEEE access
container_volume 10
creator Guo, Wenming
Wang, Zihao
Han, Fang
description Keyword extraction is the predecessor of many tasks, and its results directly affect search, recommendation, classification, and other tasks. In this study, we take Chinese text as the research object and propose a multi-feature fusion keyword extraction algorithm combined with BERT semantics and K-Truss graph(BSKT). The BSKT algorithm is based on the TextRank algorithm, which combines BERT semantic features, K-Truss features, and other features. First, the BSKT algorithm obtains the word vectors from the BERT pretraining model to calculate the semantic difference, which is used to optimize the iterative process of the TextRank word graph. Then, the BSKT algorithm obtains its K-Truss graph by decomposing the TextRank word graph and obtains the truss level feature of the word. Finally, by combining the word IDF and truss level features, the BSKT algorithm scores the words to extract keywords. Experimental results show that the BSKT algorithm achieves better performance than the latest keyword extraction algorithm SCTR in the task of extracting 1-10 keywords. Furthermore, the increment in F1 increased by 11.2% when the BSKT algorithm was used to extract three keywords from the Sensor dataset.
doi_str_mv 10.1109/ACCESS.2022.3188861
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688692454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9815884</ieee_id><doaj_id>oai_doaj_org_article_2e003bd00081478c8e2909d1308f7145</doaj_id><sourcerecordid>2688692454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ac461876d64b11f83a35e5eba10e9d0e5cf7aa7c07363f09c371e9af6cd8cf413</originalsourceid><addsrcrecordid>eNpNkFFPwjAUhRejiQT5Bbws8XnYrl3XPsICSsSYCD43pbvFIVDsugj_3sII8b705uSc0_aLoj5GA4yReBoWxXg-H6QoTQcEc84Zvok6KWYiIRlht__2-6hX12sUhgcpyzvR6K3Z-MqA8o2DeNLUld3Fr3D8ta6MxwfvlPYnabhZWVf5r208UjWUcZAWcPAfavf9EN0Ztamhdzm70edkvChektn787QYzhJNEfeJ0pRhnrOS0SXGhhNFMshgqTACUSLItMmVyjXKCSMGCU1yDEIZpkuuDcWkG03b3tKqtdy7aqvcUVpVybNg3Uoq5yu9AZkCQmRZnv9Jc645pAKJEhPETY5pFroe2669sz8N1F6ubeN24fkyZYGgSGlGg4u0Lu1sXTsw11sxkif2smUvT-zlhX1I9dtUBQDXhOA445ySP0ZafoU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688692454</pqid></control><display><type>article</type><title>Multifeature Fusion Keyword Extraction Algorithm Based on TextRank</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guo, Wenming ; Wang, Zihao ; Han, Fang</creator><creatorcontrib>Guo, Wenming ; Wang, Zihao ; Han, Fang</creatorcontrib><description>Keyword extraction is the predecessor of many tasks, and its results directly affect search, recommendation, classification, and other tasks. In this study, we take Chinese text as the research object and propose a multi-feature fusion keyword extraction algorithm combined with BERT semantics and K-Truss graph(BSKT). The BSKT algorithm is based on the TextRank algorithm, which combines BERT semantic features, K-Truss features, and other features. First, the BSKT algorithm obtains the word vectors from the BERT pretraining model to calculate the semantic difference, which is used to optimize the iterative process of the TextRank word graph. Then, the BSKT algorithm obtains its K-Truss graph by decomposing the TextRank word graph and obtains the truss level feature of the word. Finally, by combining the word IDF and truss level features, the BSKT algorithm scores the words to extract keywords. Experimental results show that the BSKT algorithm achieves better performance than the latest keyword extraction algorithm SCTR in the task of extracting 1-10 keywords. Furthermore, the increment in F1 increased by 11.2% when the BSKT algorithm was used to extract three keywords from the Sensor dataset.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3188861</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; BERT word vector ; Bit error rate ; Data mining ; Dictionaries ; Electronic mail ; Feature extraction ; Information retrieval ; Iterative methods ; K-Truss graph ; Keyword extraction ; Keywords ; Semantics ; Task analysis ; TextRank ; Trusses ; Words (language)</subject><ispartof>IEEE access, 2022, Vol.10, p.71805-71813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ac461876d64b11f83a35e5eba10e9d0e5cf7aa7c07363f09c371e9af6cd8cf413</citedby><cites>FETCH-LOGICAL-c408t-ac461876d64b11f83a35e5eba10e9d0e5cf7aa7c07363f09c371e9af6cd8cf413</cites><orcidid>0000-0003-2336-1434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9815884$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27635,27925,27926,27927,54935</link.rule.ids></links><search><creatorcontrib>Guo, Wenming</creatorcontrib><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Han, Fang</creatorcontrib><title>Multifeature Fusion Keyword Extraction Algorithm Based on TextRank</title><title>IEEE access</title><addtitle>Access</addtitle><description>Keyword extraction is the predecessor of many tasks, and its results directly affect search, recommendation, classification, and other tasks. In this study, we take Chinese text as the research object and propose a multi-feature fusion keyword extraction algorithm combined with BERT semantics and K-Truss graph(BSKT). The BSKT algorithm is based on the TextRank algorithm, which combines BERT semantic features, K-Truss features, and other features. First, the BSKT algorithm obtains the word vectors from the BERT pretraining model to calculate the semantic difference, which is used to optimize the iterative process of the TextRank word graph. Then, the BSKT algorithm obtains its K-Truss graph by decomposing the TextRank word graph and obtains the truss level feature of the word. Finally, by combining the word IDF and truss level features, the BSKT algorithm scores the words to extract keywords. Experimental results show that the BSKT algorithm achieves better performance than the latest keyword extraction algorithm SCTR in the task of extracting 1-10 keywords. Furthermore, the increment in F1 increased by 11.2% when the BSKT algorithm was used to extract three keywords from the Sensor dataset.</description><subject>Algorithms</subject><subject>BERT word vector</subject><subject>Bit error rate</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Electronic mail</subject><subject>Feature extraction</subject><subject>Information retrieval</subject><subject>Iterative methods</subject><subject>K-Truss graph</subject><subject>Keyword extraction</subject><subject>Keywords</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>TextRank</subject><subject>Trusses</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFFPwjAUhRejiQT5Bbws8XnYrl3XPsICSsSYCD43pbvFIVDsugj_3sII8b705uSc0_aLoj5GA4yReBoWxXg-H6QoTQcEc84Zvok6KWYiIRlht__2-6hX12sUhgcpyzvR6K3Z-MqA8o2DeNLUld3Fr3D8ta6MxwfvlPYnabhZWVf5r208UjWUcZAWcPAfavf9EN0Ztamhdzm70edkvChektn787QYzhJNEfeJ0pRhnrOS0SXGhhNFMshgqTACUSLItMmVyjXKCSMGCU1yDEIZpkuuDcWkG03b3tKqtdy7aqvcUVpVybNg3Uoq5yu9AZkCQmRZnv9Jc645pAKJEhPETY5pFroe2669sz8N1F6ubeN24fkyZYGgSGlGg4u0Lu1sXTsw11sxkif2smUvT-zlhX1I9dtUBQDXhOA445ySP0ZafoU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Guo, Wenming</creator><creator>Wang, Zihao</creator><creator>Han, Fang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2336-1434</orcidid></search><sort><creationdate>2022</creationdate><title>Multifeature Fusion Keyword Extraction Algorithm Based on TextRank</title><author>Guo, Wenming ; Wang, Zihao ; Han, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ac461876d64b11f83a35e5eba10e9d0e5cf7aa7c07363f09c371e9af6cd8cf413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>BERT word vector</topic><topic>Bit error rate</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Electronic mail</topic><topic>Feature extraction</topic><topic>Information retrieval</topic><topic>Iterative methods</topic><topic>K-Truss graph</topic><topic>Keyword extraction</topic><topic>Keywords</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>TextRank</topic><topic>Trusses</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wenming</creatorcontrib><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Han, Fang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wenming</au><au>Wang, Zihao</au><au>Han, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifeature Fusion Keyword Extraction Algorithm Based on TextRank</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>71805</spage><epage>71813</epage><pages>71805-71813</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Keyword extraction is the predecessor of many tasks, and its results directly affect search, recommendation, classification, and other tasks. In this study, we take Chinese text as the research object and propose a multi-feature fusion keyword extraction algorithm combined with BERT semantics and K-Truss graph(BSKT). The BSKT algorithm is based on the TextRank algorithm, which combines BERT semantic features, K-Truss features, and other features. First, the BSKT algorithm obtains the word vectors from the BERT pretraining model to calculate the semantic difference, which is used to optimize the iterative process of the TextRank word graph. Then, the BSKT algorithm obtains its K-Truss graph by decomposing the TextRank word graph and obtains the truss level feature of the word. Finally, by combining the word IDF and truss level features, the BSKT algorithm scores the words to extract keywords. Experimental results show that the BSKT algorithm achieves better performance than the latest keyword extraction algorithm SCTR in the task of extracting 1-10 keywords. Furthermore, the increment in F1 increased by 11.2% when the BSKT algorithm was used to extract three keywords from the Sensor dataset.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3188861</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2336-1434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.71805-71813
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2688692454
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
BERT word vector
Bit error rate
Data mining
Dictionaries
Electronic mail
Feature extraction
Information retrieval
Iterative methods
K-Truss graph
Keyword extraction
Keywords
Semantics
Task analysis
TextRank
Trusses
Words (language)
title Multifeature Fusion Keyword Extraction Algorithm Based on TextRank
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifeature%20Fusion%20Keyword%20Extraction%20Algorithm%20Based%20on%20TextRank&rft.jtitle=IEEE%20access&rft.au=Guo,%20Wenming&rft.date=2022&rft.volume=10&rft.spage=71805&rft.epage=71813&rft.pages=71805-71813&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3188861&rft_dat=%3Cproquest_cross%3E2688692454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688692454&rft_id=info:pmid/&rft_ieee_id=9815884&rft_doaj_id=oai_doaj_org_article_2e003bd00081478c8e2909d1308f7145&rfr_iscdi=true