MapLite 2.0: Online HD Map Inference Using a Prior SD Map

Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating envir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-07, Vol.7 (3), p.8355-8362
Hauptverfasser: Ort, Teddy, Walls, Jeffrey M., Parkison, Steven A., Gilitschenski, Igor, Rus, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8362
container_issue 3
container_start_page 8355
container_title IEEE robotics and automation letters
container_volume 7
creator Ort, Teddy
Walls, Jeffrey M.
Parkison, Steven A.
Gilitschenski, Igor
Rus, Daniela
description Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors.
doi_str_mv 10.1109/LRA.2022.3186491
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688684727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807400</ieee_id><sourcerecordid>2688684727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpeA510nk83Heiv1o4WVitpzSNNZ2VJ3a1IP_nu3toinGWaedwYexi4F5EJAeVO9jHMExFwKq4tSnLABSmMyabQ-_defs1FKawAQCo0s1YCVT35bNTvimMMtn7ebpiU-veP9mM_amiK1gfgiNe079_w5Nl3kr7_rC3ZW-02i0bEO2eLh_m0yzar542wyrrKAWu6yFXgo_KpYqtoS-iApGK0CGqQVGm_Bm1CT8t5QGYIUaomSlPIBLVHhjRyy68Pdbew-vyjt3Lr7im3_0qG2VtvC4J6CAxVil1Kk2m1j8-HjtxPg9o5c78jtHbmjoz5ydYg0RPSHlxZMASB_ADQrX0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688684727</pqid></control><display><type>article</type><title>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</title><source>IEEE Electronic Library (IEL)</source><creator>Ort, Teddy ; Walls, Jeffrey M. ; Parkison, Steven A. ; Gilitschenski, Igor ; Rus, Daniela</creator><creatorcontrib>Ort, Teddy ; Walls, Jeffrey M. ; Parkison, Steven A. ; Gilitschenski, Igor ; Rus, Daniela</creatorcontrib><description>Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3186491</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous vehicle navigation ; Estimation ; Geometry ; HD maps ; High definition ; high definition maps ; Laser radar ; localization ; mapless driving ; mapping ; Navigation ; Roads ; Semantics ; Sensors ; Topology</subject><ispartof>IEEE robotics and automation letters, 2022-07, Vol.7 (3), p.8355-8362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</citedby><cites>FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</cites><orcidid>0000-0001-5473-3566 ; 0000-0002-5571-3919 ; 0000-0001-6426-365X ; 0000-0001-8265-3555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807400$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Ort, Teddy</creatorcontrib><creatorcontrib>Walls, Jeffrey M.</creatorcontrib><creatorcontrib>Parkison, Steven A.</creatorcontrib><creatorcontrib>Gilitschenski, Igor</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><title>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors.</description><subject>Autonomous vehicle navigation</subject><subject>Estimation</subject><subject>Geometry</subject><subject>HD maps</subject><subject>High definition</subject><subject>high definition maps</subject><subject>Laser radar</subject><subject>localization</subject><subject>mapless driving</subject><subject>mapping</subject><subject>Navigation</subject><subject>Roads</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Topology</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpeA510nk83Heiv1o4WVitpzSNNZ2VJ3a1IP_nu3toinGWaedwYexi4F5EJAeVO9jHMExFwKq4tSnLABSmMyabQ-_defs1FKawAQCo0s1YCVT35bNTvimMMtn7ebpiU-veP9mM_amiK1gfgiNe079_w5Nl3kr7_rC3ZW-02i0bEO2eLh_m0yzar542wyrrKAWu6yFXgo_KpYqtoS-iApGK0CGqQVGm_Bm1CT8t5QGYIUaomSlPIBLVHhjRyy68Pdbew-vyjt3Lr7im3_0qG2VtvC4J6CAxVil1Kk2m1j8-HjtxPg9o5c78jtHbmjoz5ydYg0RPSHlxZMASB_ADQrX0k</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ort, Teddy</creator><creator>Walls, Jeffrey M.</creator><creator>Parkison, Steven A.</creator><creator>Gilitschenski, Igor</creator><creator>Rus, Daniela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5473-3566</orcidid><orcidid>https://orcid.org/0000-0002-5571-3919</orcidid><orcidid>https://orcid.org/0000-0001-6426-365X</orcidid><orcidid>https://orcid.org/0000-0001-8265-3555</orcidid></search><sort><creationdate>20220701</creationdate><title>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</title><author>Ort, Teddy ; Walls, Jeffrey M. ; Parkison, Steven A. ; Gilitschenski, Igor ; Rus, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous vehicle navigation</topic><topic>Estimation</topic><topic>Geometry</topic><topic>HD maps</topic><topic>High definition</topic><topic>high definition maps</topic><topic>Laser radar</topic><topic>localization</topic><topic>mapless driving</topic><topic>mapping</topic><topic>Navigation</topic><topic>Roads</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ort, Teddy</creatorcontrib><creatorcontrib>Walls, Jeffrey M.</creatorcontrib><creatorcontrib>Parkison, Steven A.</creatorcontrib><creatorcontrib>Gilitschenski, Igor</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ort, Teddy</au><au>Walls, Jeffrey M.</au><au>Parkison, Steven A.</au><au>Gilitschenski, Igor</au><au>Rus, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>7</volume><issue>3</issue><spage>8355</spage><epage>8362</epage><pages>8355-8362</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3186491</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5473-3566</orcidid><orcidid>https://orcid.org/0000-0002-5571-3919</orcidid><orcidid>https://orcid.org/0000-0001-6426-365X</orcidid><orcidid>https://orcid.org/0000-0001-8265-3555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-07, Vol.7 (3), p.8355-8362
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2688684727
source IEEE Electronic Library (IEL)
subjects Autonomous vehicle navigation
Estimation
Geometry
HD maps
High definition
high definition maps
Laser radar
localization
mapless driving
mapping
Navigation
Roads
Semantics
Sensors
Topology
title MapLite 2.0: Online HD Map Inference Using a Prior SD Map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MapLite%202.0:%20Online%20HD%20Map%20Inference%20Using%20a%20Prior%20SD%20Map&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Ort,%20Teddy&rft.date=2022-07-01&rft.volume=7&rft.issue=3&rft.spage=8355&rft.epage=8362&rft.pages=8355-8362&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3186491&rft_dat=%3Cproquest_cross%3E2688684727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688684727&rft_id=info:pmid/&rft_ieee_id=9807400&rfr_iscdi=true