MapLite 2.0: Online HD Map Inference Using a Prior SD Map
Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating envir...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2022-07, Vol.7 (3), p.8355-8362 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8362 |
---|---|
container_issue | 3 |
container_start_page | 8355 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Ort, Teddy Walls, Jeffrey M. Parkison, Steven A. Gilitschenski, Igor Rus, Daniela |
description | Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors. |
doi_str_mv | 10.1109/LRA.2022.3186491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688684727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807400</ieee_id><sourcerecordid>2688684727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpeA510nk83Heiv1o4WVitpzSNNZ2VJ3a1IP_nu3toinGWaedwYexi4F5EJAeVO9jHMExFwKq4tSnLABSmMyabQ-_defs1FKawAQCo0s1YCVT35bNTvimMMtn7ebpiU-veP9mM_amiK1gfgiNe079_w5Nl3kr7_rC3ZW-02i0bEO2eLh_m0yzar542wyrrKAWu6yFXgo_KpYqtoS-iApGK0CGqQVGm_Bm1CT8t5QGYIUaomSlPIBLVHhjRyy68Pdbew-vyjt3Lr7im3_0qG2VtvC4J6CAxVil1Kk2m1j8-HjtxPg9o5c78jtHbmjoz5ydYg0RPSHlxZMASB_ADQrX0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688684727</pqid></control><display><type>article</type><title>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</title><source>IEEE Electronic Library (IEL)</source><creator>Ort, Teddy ; Walls, Jeffrey M. ; Parkison, Steven A. ; Gilitschenski, Igor ; Rus, Daniela</creator><creatorcontrib>Ort, Teddy ; Walls, Jeffrey M. ; Parkison, Steven A. ; Gilitschenski, Igor ; Rus, Daniela</creatorcontrib><description>Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3186491</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous vehicle navigation ; Estimation ; Geometry ; HD maps ; High definition ; high definition maps ; Laser radar ; localization ; mapless driving ; mapping ; Navigation ; Roads ; Semantics ; Sensors ; Topology</subject><ispartof>IEEE robotics and automation letters, 2022-07, Vol.7 (3), p.8355-8362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</citedby><cites>FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</cites><orcidid>0000-0001-5473-3566 ; 0000-0002-5571-3919 ; 0000-0001-6426-365X ; 0000-0001-8265-3555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807400$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Ort, Teddy</creatorcontrib><creatorcontrib>Walls, Jeffrey M.</creatorcontrib><creatorcontrib>Parkison, Steven A.</creatorcontrib><creatorcontrib>Gilitschenski, Igor</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><title>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors.</description><subject>Autonomous vehicle navigation</subject><subject>Estimation</subject><subject>Geometry</subject><subject>HD maps</subject><subject>High definition</subject><subject>high definition maps</subject><subject>Laser radar</subject><subject>localization</subject><subject>mapless driving</subject><subject>mapping</subject><subject>Navigation</subject><subject>Roads</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Topology</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpeA510nk83Heiv1o4WVitpzSNNZ2VJ3a1IP_nu3toinGWaedwYexi4F5EJAeVO9jHMExFwKq4tSnLABSmMyabQ-_defs1FKawAQCo0s1YCVT35bNTvimMMtn7ebpiU-veP9mM_amiK1gfgiNe079_w5Nl3kr7_rC3ZW-02i0bEO2eLh_m0yzar542wyrrKAWu6yFXgo_KpYqtoS-iApGK0CGqQVGm_Bm1CT8t5QGYIUaomSlPIBLVHhjRyy68Pdbew-vyjt3Lr7im3_0qG2VtvC4J6CAxVil1Kk2m1j8-HjtxPg9o5c78jtHbmjoz5ydYg0RPSHlxZMASB_ADQrX0k</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ort, Teddy</creator><creator>Walls, Jeffrey M.</creator><creator>Parkison, Steven A.</creator><creator>Gilitschenski, Igor</creator><creator>Rus, Daniela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5473-3566</orcidid><orcidid>https://orcid.org/0000-0002-5571-3919</orcidid><orcidid>https://orcid.org/0000-0001-6426-365X</orcidid><orcidid>https://orcid.org/0000-0001-8265-3555</orcidid></search><sort><creationdate>20220701</creationdate><title>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</title><author>Ort, Teddy ; Walls, Jeffrey M. ; Parkison, Steven A. ; Gilitschenski, Igor ; Rus, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-d0a04ad4b5f8e2ac3ec765c272ed27a80a7cfe5aa7e9cc315b23e55ac28ee4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autonomous vehicle navigation</topic><topic>Estimation</topic><topic>Geometry</topic><topic>HD maps</topic><topic>High definition</topic><topic>high definition maps</topic><topic>Laser radar</topic><topic>localization</topic><topic>mapless driving</topic><topic>mapping</topic><topic>Navigation</topic><topic>Roads</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ort, Teddy</creatorcontrib><creatorcontrib>Walls, Jeffrey M.</creatorcontrib><creatorcontrib>Parkison, Steven A.</creatorcontrib><creatorcontrib>Gilitschenski, Igor</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ort, Teddy</au><au>Walls, Jeffrey M.</au><au>Parkison, Steven A.</au><au>Gilitschenski, Igor</au><au>Rus, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MapLite 2.0: Online HD Map Inference Using a Prior SD Map</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>7</volume><issue>3</issue><spage>8355</spage><epage>8362</epage><pages>8355-8362</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Deploying fully autonomous vehicles has been a subject of intense research in both industry and academia. However, the majority of these efforts have relied heavily on High Definition (HD) prior maps. These are necessary to provide the planning and control modules a rich model of the operating environment. While this approach has shown success, it drastically limits both the scale and scope of these deployments as creating and maintaining HD maps for very large areas can be prohibitive. In this work, we present a new method for building the HD map online by starting with a Standard Definition (SD) prior map such as a navigational road map, and incorporating onboard sensors to infer the local HD map. We evaluate our method extensively on 100 sequences of real-world vehicle data and demonstrate that it can infer a highly structured HD map-like model of the world accurately using only SD prior maps and onboard sensors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3186491</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5473-3566</orcidid><orcidid>https://orcid.org/0000-0002-5571-3919</orcidid><orcidid>https://orcid.org/0000-0001-6426-365X</orcidid><orcidid>https://orcid.org/0000-0001-8265-3555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-07, Vol.7 (3), p.8355-8362 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2688684727 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous vehicle navigation Estimation Geometry HD maps High definition high definition maps Laser radar localization mapless driving mapping Navigation Roads Semantics Sensors Topology |
title | MapLite 2.0: Online HD Map Inference Using a Prior SD Map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MapLite%202.0:%20Online%20HD%20Map%20Inference%20Using%20a%20Prior%20SD%20Map&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Ort,%20Teddy&rft.date=2022-07-01&rft.volume=7&rft.issue=3&rft.spage=8355&rft.epage=8362&rft.pages=8355-8362&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3186491&rft_dat=%3Cproquest_cross%3E2688684727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688684727&rft_id=info:pmid/&rft_ieee_id=9807400&rfr_iscdi=true |